Tue, 16 Dec 2014 02:48:18 +0200
- rcon sessions are no longer allocated on the heap
/* * skulltag::HuffmanCodec class - Huffman encoder and decoder. * * Copyright 2009 Timothy Landers * email: code.vortexcortex@gmail.com * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "huffcodec.h" /** Prevents naming convention problems via encapsulation. */ namespace skulltag { // HuffmanCodec Implementation /** Reverses the order of bits in a byte. * EG: The statement <code>reverseMap[0xAF] == 0xF5</code> is <code>true</code>. <br> * The index <code>10101111</code> stores the reverse value: <code>11110101</code>. <br> * Note: One array lookup is much faster than Eight bit manipulating loop iterations. */ unsigned char const HuffmanCodec::reverseMap[] = { 0,128, 64,192, 32,160, 96,224, 16,144, 80,208, 48,176,112,240, 8,136, 72,200, 40,168,104,232, 24,152, 88,216, 56,184,120,248, 4,132, 68,196, 36,164,100,228, 20,148, 84,212, 52,180,116,244, 12,140, 76,204, 44,172,108,236, 28,156, 92,220, 60,188,124,252, 2,130, 66,194, 34,162, 98,226, 18,146, 82,210, 50,178,114,242, 10,138, 74,202, 42,170,106,234, 26,154, 90,218, 58,186,122,250, 6,134, 70,198, 38,166,102,230, 22,150, 86,214, 54,182,118,246, 14,142, 78,206, 46,174,110,238, 30,158, 94,222, 62,190,126,254, 1,129, 65,193, 33,161, 97,225, 17,145, 81,209, 49,177,113,241, 9,137, 73,201, 41,169,105,233, 25,153, 89,217, 57,185,121,249, 5,133, 69,197, 37,165,101,229, 21,149, 85,213, 53,181,117,245, 13,141, 77,205, 45,173,109,237, 29,157, 93,221, 61,189,125,253, 3,131, 67,195, 35,163, 99,227, 19,147, 83,211, 51,179,115,243, 11,139, 75,203, 43,171,107,235, 27,155, 91,219, 59,187,123,251, 7,135, 71,199, 39,167,103,231, 23,151, 87,215, 55,183,119,247, 15,143, 79,207, 47,175,111,239, 31,159, 95,223, 63,191,127,255 }; /** Creates a new HuffmanCodec * @param treeData char array containing the tree data to use. * @param dataLength number of chars in treeData. */ HuffmanCodec::HuffmanCodec( unsigned char const * const treeData, int dataLength ) : Codec() { init(); // init code table (256 pointers to Huffman Leaf Nodes.) codeTable = new HuffmanNode*[256]; for (int i = 0; i < 256; i++) codeTable[i] = 0; // build root node root = new HuffmanNode; root->bitCount = 0; root->code = 0; root->value = -1; // recursive Huffman tree builder. buildTree( root, treeData, 0, dataLength, codeTable, 256 ); huffResourceOwner = true; } /** Creates a new HuffmanCodec that uses the specified Huffman resources. * @param treeRootNode The root node of a valid huffman tree. * @param leafCodeTable A code lookup table where references to HuffmanNodes are stored with their array index equal to their value. * Note: The tree nodes will not be released upon destruction of this HuffmanCodec. */ HuffmanCodec::HuffmanCodec( HuffmanNode * treeRootNode, HuffmanNode ** leafCodeTable ){ init(); // assign values -- no table building or allocations. root = treeRootNode; codeTable = leafCodeTable; huffResourceOwner = false; } /** Checks the ownership state of this HuffmanCodec's resources. * @return true if the tree & code table will be released upon destruction of this HuffmanCodec. <br> * A false return value means this HuffmanCodec is not responsible for deleting its resources. */ bool HuffmanCodec::huffmanResourceOwner(){ return huffResourceOwner; } /** Perform initialization procedures common to all constructors. */ void HuffmanCodec::init(){ writer = new BitWriter(); reverseBits = false; expandable = true; huffResourceOwner = false; } /** Increases a codeLength up to the longest Huffman code bit length found in the node or any of its children. <br> * Set to Zero before calling to determine maximum code bit length. * @param node in: The node to begin searching at. * @param codeLength out: Variable to hold the longest code bit length found. */ void HuffmanCodec::maxCodeLength( HuffmanNode const * const node, int &codeLength ){ // [TL] We must walk each tree node since the codeTable may not contain the set of all leaf nodes. // bail on NULL node (tree is corrupt). if ( node == 0) return; // Recurse across children if they exist. if ( node->branch != 0 ){ maxCodeLength( &(node->branch[0]), codeLength ); maxCodeLength( &(node->branch[1]), codeLength ); } else if ( codeLength < node->bitCount ){ // set codeLength if it's smaller than current node's bitCount. codeLength = node->bitCount; } } /** Decreases a codeLength to the shortest Huffman code bit length found in the node or any of its children. <br> * Set to Zero before calling to determine minimum code bit length. * @param node in: The node to begin searching at. * @param codeLength out: Variable to hold the longest code bit length found. */ void HuffmanCodec::minCodeLength( HuffmanNode const * const node, int &codeLength ){ /* [TL] Do not optimize under the assumption child nodes will have longer code Lengths! * Future subclasses may have trees that diverge from Huffman specs. */ // bail on NULL node (tree is corrupt). if ( node == 0 ) return; // Recurse across children if they exist. if ( node->branch != 0 ){ minCodeLength( &(node->branch[0]), codeLength ); minCodeLength( &(node->branch[1]), codeLength ); } else if ( (codeLength > node->bitCount) || (codeLength == 0) ) { // set codeLength if it's Zero or larger than current node's bitCount. codeLength = node->bitCount; } } /** Recursively builds a Huffman Tree. <br> * The initial root node should have the following field values: <br> * <pre> * bitCount : 0 * code : 0 * value : -1 * branch : 0 (NULL) * </pre> * @param node in/out: branch node of the Huffman Tree. * @param treeData in: char array containing the Huffman Tree's byte representation. * @param index in: Current array element to read the next tree node from. * @param dataLength in: Length of treeData * @param codeTable in/out: array of pointers to HuffmanNode structs. * @param tableLength in: maximum index allowed in the codeTable. * @return the next index to read from or -1 if an error occurs. * */ int HuffmanCodec::buildTree( HuffmanNode * node, unsigned char const * const treeData, int index, int dataLength, HuffmanNode ** const &codeTable, int tableLength ){ if ( index >= dataLength ) return -1; // Read the branch description bit field int desc = treeData[index]; index++; // Create the array that will hold L/R child nodes of this branch. node->branch = new HuffmanNode[2]; // Read the child Nodes for this branch. for ( int i = 0; i < 2; i++ ){ // Increase bit count, and update huffman code to match the node's tree position. node->branch[i].bitCount = node->bitCount + 1; node->branch[i].code = (node->code << 1) | i; // appends a 0 or 1 depending on L/R branch. node->branch[i].value = -1; // default value. // Test a bit from the branch description (least significant bit == left) if ( (desc & (1 << i)) == 0 ){ // Child node is a branch; Recurse. if ( (index = buildTree( &(node->branch[i]), treeData, index, dataLength, codeTable, tableLength )) < 0 ) return -1; // This means the entire left sub tree will be read before the right sub tree gets read. } else { // Read leaf value and map its value/index in the nodes array. if ( index >= dataLength ) return -1; // set the nodes huffman code values. node->branch[i].code = (node->code << 1) | i; node->branch[i].bitCount = node->bitCount+1; node->branch[i].value = treeData[index] & 0xff; // NULL the child node's branch to mark it as a leaf. node->branch[i].branch = 0; // buffer overflow check. if ( (node->branch[i].value >= 0) && (node->branch[i].value <= tableLength ) ) // store a pointer to the leaf node into the code table at the location of its byte value. codeTable[ node->branch[i].value ] = &node->branch[i]; index++; } } return index; } /** Decodes data read from an input buffer and stores the result in the output buffer. * @return number of bytes stored in the output buffer or -1 if an error occurs while encoding. */ int HuffmanCodec::encode( unsigned char const * const input, /**< in: pointer to the first byte to encode. */ unsigned char * const output, /**< out: pointer to an output buffer to store data. */ int const &inLength, /**< in: number of bytes of input buffer to encoded. */ int const &outLength /**< in: maximum length of data to output. */ ) const { // setup the bit buffer to output. if not expandable Limit output to input length. if ( expandable ) writer->outputBuffer( output, outLength ); else writer->outputBuffer( output, ((inLength + 1) < outLength) ? inLength + 1 : outLength ); writer->put( (unsigned char)0 ); // reserve place for padding signal. HuffmanNode * node; // temp ptr cache; for ( int i = 0; i < inLength; i++ ){ node = codeTable[ 0xff & input[i] ]; //lookup node // Put the huffman code into the bit buffer and bail if error occurs. if ( !writer->put( node->code, node->bitCount ) ) return -1; } int bytesWritten, padding; if ( writer->finish( bytesWritten, padding ) ){ // write padding signal byte to begining of stream. output[0] = (unsigned char)padding; } else return -1; // Reverse the bit order of each byte (Old Huffman Compatibility Mode) if ( reverseBits ) for ( int i = 1; i < bytesWritten; i++ ){ output[i] = reverseMap[ 0xff & output[i] ]; } return bytesWritten; } // end function encode /** Decodes data read from an input buffer and stores the result in the output buffer. * @return number of bytes stored in the output buffer or -1 if an error occurs while decoding. */ int HuffmanCodec::decode( unsigned char const * const input, /**< in: pointer to data that needs decoding. */ unsigned char * const output, /**< out: pointer to output buffer to store decoded data. */ int const &inLength, /**< in: number of bytes of input buffer to read. */ int const &outLength /**< in: maximum length of data to output. */ ){ if ( inLength < 1 ) return 0; int bitsAvailable = ((inLength-1) << 3) - (0xff & input[0]); int rIndex = 1; // read index of input buffer. int wIndex = 0; // write index of output buffer. char byte = 0; // bits of the current byte. int bitsLeft = 0; // bits left in byte; HuffmanNode * node = root; // Traverse the tree, output values. while ( (bitsAvailable > 0) && (node != 0) ){ // Get the next byte if we've run out. if ( bitsLeft <= 0 ){ byte = input[rIndex++]; if ( reverseBits ) byte = reverseMap[ 0xff & byte ]; bitsLeft = 8; } // Traverse the tree according to the most significant bit. node = &(node->branch[ ((byte >> 7) & 0x01) ]); // Is the node Non NULL, and a leaf? if ( (node != 0) && (node->branch == 0) ){ // buffer overflow prevention if ( wIndex >= outLength ) return wIndex; // Output leaf node's value and restart traversal at root node. output[ wIndex++ ] = (unsigned char)(node->value & 0xff); node = root; } byte <<= 1; // cue up the next bit bitsLeft--; // use up one bit of byte bitsAvailable--; // decrement total bits left } return wIndex; } // end function decode /** Deletes all sub nodes of a HuffmanNode by traversing and deleting its child nodes. * @param treeNode pointer to a HuffmanNode whos children will be deleted. */ void HuffmanCodec::deleteTree( HuffmanNode * treeNode ){ if ( treeNode == 0 ) return; if ( treeNode->branch != 0 ){ deleteTree( &(treeNode->branch[0]) ); deleteTree( &(treeNode->branch[1]) ); delete treeNode->branch; } } /** Destructor - frees resources. */ HuffmanCodec::~HuffmanCodec() { delete writer; //check for resource ownership before deletion if ( huffmanResourceOwner() ){ delete codeTable; deleteTree( root ); delete root; } } /** Enables or Disables backwards bit ordering of bytes. * @param backwards "true" enables reversed bit order bytes, "false" uses standard byte bit ordering. */ void HuffmanCodec::reversedBytes( bool backwards ){ reverseBits = backwards; } /** Check the state of backwards bit ordering for bytes. * @return true: bits within bytes are reversed. false: bits within bytes are normal. */ bool HuffmanCodec::reversedBytes(){ return reverseBits; } /** Enable or Disable data expansion during encoding. * @param expandingAllowed "true" allows encoding to expand data. "false" causes failure upon expansion. */ void HuffmanCodec::allowExpansion( bool expandingAllowed ){ expandable = expandingAllowed; } /** Check the state of data expandability. * @return true: data expansion is allowed. false: data is not allowed to expand. */ bool HuffmanCodec::allowExpansion(){ return expandable; } }; // end namespace skulltag