Wed, 15 Jun 2022 12:17:29 +0300
Use Mapbox's ear clipping algorithm to handle drawing any simple polygon
CMakeLists.txt | file | annotate | diff | comparison | revisions | |
src/algorithm/earcut.h | file | annotate | diff | comparison | revisions | |
src/document.cpp | file | annotate | diff | comparison | revisions | |
src/document.h | file | annotate | diff | comparison | revisions | |
src/geometry.cpp | file | annotate | diff | comparison | revisions | |
src/geometry.h | file | annotate | diff | comparison | revisions |
--- a/CMakeLists.txt Tue Jun 14 23:04:49 2022 +0300 +++ b/CMakeLists.txt Wed Jun 15 12:17:29 2022 +0300 @@ -75,6 +75,7 @@ src/uiutilities.h src/version.h src/vertexmap.h + src/algorithm/earcut.h src/gl/axesprogram.h src/gl/basicshaderprogram.h src/gl/common.h
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/algorithm/earcut.h Wed Jun 15 12:17:29 2022 +0300 @@ -0,0 +1,828 @@ +#pragma once + +#include <algorithm> +#include <cassert> +#include <cmath> +#include <cstddef> +#include <limits> +#include <memory> +#include <utility> +#include <vector> + +namespace mapbox { + +namespace util { + +template <std::size_t I, typename T> struct nth { + inline static typename std::tuple_element<I, T>::type + get(const T& t) { return std::get<I>(t); }; +}; + +} + +namespace detail { + +template <typename N = uint32_t> +class Earcut { +public: + std::vector<N> indices; + std::size_t vertices = 0; + + template <typename Polygon> + void operator()(const Polygon& points); + +private: + struct Node { + Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {} + Node(const Node&) = delete; + Node& operator=(const Node&) = delete; + Node(Node&&) = delete; + Node& operator=(Node&&) = delete; + + const N i; + const double x; + const double y; + + // previous and next vertice nodes in a polygon ring + Node* prev = nullptr; + Node* next = nullptr; + + // z-order curve value + int32_t z = 0; + + // previous and next nodes in z-order + Node* prevZ = nullptr; + Node* nextZ = nullptr; + + // indicates whether this is a steiner point + bool steiner = false; + }; + + template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise); + Node* filterPoints(Node* start, Node* end = nullptr); + void earcutLinked(Node* ear, int pass = 0); + bool isEar(Node* ear); + bool isEarHashed(Node* ear); + Node* cureLocalIntersections(Node* start); + void splitEarcut(Node* start); + template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode); + Node* eliminateHole(Node* hole, Node* outerNode); + Node* findHoleBridge(Node* hole, Node* outerNode); + bool sectorContainsSector(const Node* m, const Node* p); + void indexCurve(Node* start); + Node* sortLinked(Node* list); + int32_t zOrder(const double x_, const double y_); + Node* getLeftmost(Node* start); + bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const; + bool isValidDiagonal(Node* a, Node* b); + double area(const Node* p, const Node* q, const Node* r) const; + bool equals(const Node* p1, const Node* p2); + bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2); + bool onSegment(const Node* p, const Node* q, const Node* r); + int sign(double val); + bool intersectsPolygon(const Node* a, const Node* b); + bool locallyInside(const Node* a, const Node* b); + bool middleInside(const Node* a, const Node* b); + Node* splitPolygon(Node* a, Node* b); + template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last); + void removeNode(Node* p); + + bool hashing; + double minX, maxX; + double minY, maxY; + double inv_size = 0; + + template <typename T, typename Alloc = std::allocator<T>> + class ObjectPool { + public: + ObjectPool() { } + ObjectPool(std::size_t blockSize_) { + reset(blockSize_); + } + ~ObjectPool() { + clear(); + } + template <typename... Args> + T* construct(Args&&... args) { + if (currentIndex >= blockSize) { + currentBlock = alloc_traits::allocate(alloc, blockSize); + allocations.emplace_back(currentBlock); + currentIndex = 0; + } + T* object = ¤tBlock[currentIndex++]; + alloc_traits::construct(alloc, object, std::forward<Args>(args)...); + return object; + } + void reset(std::size_t newBlockSize) { + for (auto allocation : allocations) { + alloc_traits::deallocate(alloc, allocation, blockSize); + } + allocations.clear(); + blockSize = std::max<std::size_t>(1, newBlockSize); + currentBlock = nullptr; + currentIndex = blockSize; + } + void clear() { reset(blockSize); } + private: + T* currentBlock = nullptr; + std::size_t currentIndex = 1; + std::size_t blockSize = 1; + std::vector<T*> allocations; + Alloc alloc; + typedef typename std::allocator_traits<Alloc> alloc_traits; + }; + ObjectPool<Node> nodes; +}; + +template <typename N> template <typename Polygon> +void Earcut<N>::operator()(const Polygon& points) { + // reset + indices.clear(); + vertices = 0; + + if (points.empty()) return; + + double x; + double y; + int threshold = 80; + std::size_t len = 0; + + for (size_t i = 0; threshold >= 0 && i < points.size(); i++) { + threshold -= static_cast<int>(points[i].size()); + len += points[i].size(); + } + + //estimate size of nodes and indices + nodes.reset(len * 3 / 2); + indices.reserve(len + points[0].size()); + + Node* outerNode = linkedList(points[0], true); + if (!outerNode || outerNode->prev == outerNode->next) return; + + if (points.size() > 1) outerNode = eliminateHoles(points, outerNode); + + // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox + hashing = threshold < 0; + if (hashing) { + Node* p = outerNode->next; + minX = maxX = outerNode->x; + minY = maxY = outerNode->y; + do { + x = p->x; + y = p->y; + minX = std::min<double>(minX, x); + minY = std::min<double>(minY, y); + maxX = std::max<double>(maxX, x); + maxY = std::max<double>(maxY, y); + p = p->next; + } while (p != outerNode); + + // minX, minY and size are later used to transform coords into integers for z-order calculation + inv_size = std::max<double>(maxX - minX, maxY - minY); + inv_size = inv_size != .0 ? (1. / inv_size) : .0; + } + + earcutLinked(outerNode); + + nodes.clear(); +} + +// create a circular doubly linked list from polygon points in the specified winding order +template <typename N> template <typename Ring> +typename Earcut<N>::Node* +Earcut<N>::linkedList(const Ring& points, const bool clockwise) { + using Point = typename Ring::value_type; + double sum = 0; + const std::size_t len = points.size(); + std::size_t i, j; + Node* last = nullptr; + + // calculate original winding order of a polygon ring + for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) { + const auto& p1 = points[i]; + const auto& p2 = points[j]; + const double p20 = util::nth<0, Point>::get(p2); + const double p10 = util::nth<0, Point>::get(p1); + const double p11 = util::nth<1, Point>::get(p1); + const double p21 = util::nth<1, Point>::get(p2); + sum += (p20 - p10) * (p11 + p21); + } + + // link points into circular doubly-linked list in the specified winding order + if (clockwise == (sum > 0)) { + for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last); + } else { + for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last); + } + + if (last && equals(last, last->next)) { + removeNode(last); + last = last->next; + } + + vertices += len; + + return last; +} + +// eliminate colinear or duplicate points +template <typename N> +typename Earcut<N>::Node* +Earcut<N>::filterPoints(Node* start, Node* end) { + if (!end) end = start; + + Node* p = start; + bool again; + do { + again = false; + + if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) { + removeNode(p); + p = end = p->prev; + + if (p == p->next) break; + again = true; + + } else { + p = p->next; + } + } while (again || p != end); + + return end; +} + +// main ear slicing loop which triangulates a polygon (given as a linked list) +template <typename N> +void Earcut<N>::earcutLinked(Node* ear, int pass) { + if (!ear) return; + + // interlink polygon nodes in z-order + if (!pass && hashing) indexCurve(ear); + + Node* stop = ear; + Node* prev; + Node* next; + + int iterations = 0; + + // iterate through ears, slicing them one by one + while (ear->prev != ear->next) { + iterations++; + prev = ear->prev; + next = ear->next; + + if (hashing ? isEarHashed(ear) : isEar(ear)) { + // cut off the triangle + indices.emplace_back(prev->i); + indices.emplace_back(ear->i); + indices.emplace_back(next->i); + + removeNode(ear); + + // skipping the next vertice leads to less sliver triangles + ear = next->next; + stop = next->next; + + continue; + } + + ear = next; + + // if we looped through the whole remaining polygon and can't find any more ears + if (ear == stop) { + // try filtering points and slicing again + if (!pass) earcutLinked(filterPoints(ear), 1); + + // if this didn't work, try curing all small self-intersections locally + else if (pass == 1) { + ear = cureLocalIntersections(filterPoints(ear)); + earcutLinked(ear, 2); + + // as a last resort, try splitting the remaining polygon into two + } else if (pass == 2) splitEarcut(ear); + + break; + } + } +} + +// check whether a polygon node forms a valid ear with adjacent nodes +template <typename N> +bool Earcut<N>::isEar(Node* ear) { + const Node* a = ear->prev; + const Node* b = ear; + const Node* c = ear->next; + + if (area(a, b, c) >= 0) return false; // reflex, can't be an ear + + // now make sure we don't have other points inside the potential ear + Node* p = ear->next->next; + + while (p != ear->prev) { + if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) && + area(p->prev, p, p->next) >= 0) return false; + p = p->next; + } + + return true; +} + +template <typename N> +bool Earcut<N>::isEarHashed(Node* ear) { + const Node* a = ear->prev; + const Node* b = ear; + const Node* c = ear->next; + + if (area(a, b, c) >= 0) return false; // reflex, can't be an ear + + // triangle bbox; min & max are calculated like this for speed + const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x)); + const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y)); + const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x)); + const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y)); + + // z-order range for the current triangle bbox; + const int32_t minZ = zOrder(minTX, minTY); + const int32_t maxZ = zOrder(maxTX, maxTY); + + // first look for points inside the triangle in increasing z-order + Node* p = ear->nextZ; + + while (p && p->z <= maxZ) { + if (p != ear->prev && p != ear->next && + pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) && + area(p->prev, p, p->next) >= 0) return false; + p = p->nextZ; + } + + // then look for points in decreasing z-order + p = ear->prevZ; + + while (p && p->z >= minZ) { + if (p != ear->prev && p != ear->next && + pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) && + area(p->prev, p, p->next) >= 0) return false; + p = p->prevZ; + } + + return true; +} + +// go through all polygon nodes and cure small local self-intersections +template <typename N> +typename Earcut<N>::Node* +Earcut<N>::cureLocalIntersections(Node* start) { + Node* p = start; + do { + Node* a = p->prev; + Node* b = p->next->next; + + // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2]) + if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) { + indices.emplace_back(a->i); + indices.emplace_back(p->i); + indices.emplace_back(b->i); + + // remove two nodes involved + removeNode(p); + removeNode(p->next); + + p = start = b; + } + p = p->next; + } while (p != start); + + return filterPoints(p); +} + +// try splitting polygon into two and triangulate them independently +template <typename N> +void Earcut<N>::splitEarcut(Node* start) { + // look for a valid diagonal that divides the polygon into two + Node* a = start; + do { + Node* b = a->next->next; + while (b != a->prev) { + if (a->i != b->i && isValidDiagonal(a, b)) { + // split the polygon in two by the diagonal + Node* c = splitPolygon(a, b); + + // filter colinear points around the cuts + a = filterPoints(a, a->next); + c = filterPoints(c, c->next); + + // run earcut on each half + earcutLinked(a); + earcutLinked(c); + return; + } + b = b->next; + } + a = a->next; + } while (a != start); +} + +// link every hole into the outer loop, producing a single-ring polygon without holes +template <typename N> template <typename Polygon> +typename Earcut<N>::Node* +Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) { + const size_t len = points.size(); + + std::vector<Node*> queue; + for (size_t i = 1; i < len; i++) { + Node* list = linkedList(points[i], false); + if (list) { + if (list == list->next) list->steiner = true; + queue.push_back(getLeftmost(list)); + } + } + std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) { + return a->x < b->x; + }); + + // process holes from left to right + for (size_t i = 0; i < queue.size(); i++) { + outerNode = eliminateHole(queue[i], outerNode); + outerNode = filterPoints(outerNode, outerNode->next); + } + + return outerNode; +} + +// find a bridge between vertices that connects hole with an outer ring and and link it +template <typename N> +typename Earcut<N>::Node* +Earcut<N>::eliminateHole(Node* hole, Node* outerNode) { + Node* bridge = findHoleBridge(hole, outerNode); + if (!bridge) { + return outerNode; + } + + Node* bridgeReverse = splitPolygon(bridge, hole); + + // filter collinear points around the cuts + Node* filteredBridge = filterPoints(bridge, bridge->next); + filterPoints(bridgeReverse, bridgeReverse->next); + + // Check if input node was removed by the filtering + return outerNode == bridge ? filteredBridge : outerNode; +} + +// David Eberly's algorithm for finding a bridge between hole and outer polygon +template <typename N> +typename Earcut<N>::Node* +Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) { + Node* p = outerNode; + double hx = hole->x; + double hy = hole->y; + double qx = -std::numeric_limits<double>::infinity(); + Node* m = nullptr; + + // find a segment intersected by a ray from the hole's leftmost Vertex to the left; + // segment's endpoint with lesser x will be potential connection Vertex + do { + if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) { + double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y); + if (x <= hx && x > qx) { + qx = x; + if (x == hx) { + if (hy == p->y) return p; + if (hy == p->next->y) return p->next; + } + m = p->x < p->next->x ? p : p->next; + } + } + p = p->next; + } while (p != outerNode); + + if (!m) return 0; + + if (hx == qx) return m; // hole touches outer segment; pick leftmost endpoint + + // look for points inside the triangle of hole Vertex, segment intersection and endpoint; + // if there are no points found, we have a valid connection; + // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex + + const Node* stop = m; + double tanMin = std::numeric_limits<double>::infinity(); + double tanCur = 0; + + p = m; + double mx = m->x; + double my = m->y; + + do { + if (hx >= p->x && p->x >= mx && hx != p->x && + pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) { + + tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential + + if (locallyInside(p, hole) && + (tanCur < tanMin || (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) { + m = p; + tanMin = tanCur; + } + } + + p = p->next; + } while (p != stop); + + return m; +} + +// whether sector in vertex m contains sector in vertex p in the same coordinates +template <typename N> +bool Earcut<N>::sectorContainsSector(const Node* m, const Node* p) { + return area(m->prev, m, p->prev) < 0 && area(p->next, m, m->next) < 0; +} + +// interlink polygon nodes in z-order +template <typename N> +void Earcut<N>::indexCurve(Node* start) { + assert(start); + Node* p = start; + + do { + p->z = p->z ? p->z : zOrder(p->x, p->y); + p->prevZ = p->prev; + p->nextZ = p->next; + p = p->next; + } while (p != start); + + p->prevZ->nextZ = nullptr; + p->prevZ = nullptr; + + sortLinked(p); +} + +// Simon Tatham's linked list merge sort algorithm +// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html +template <typename N> +typename Earcut<N>::Node* +Earcut<N>::sortLinked(Node* list) { + assert(list); + Node* p; + Node* q; + Node* e; + Node* tail; + int i, numMerges, pSize, qSize; + int inSize = 1; + + for (;;) { + p = list; + list = nullptr; + tail = nullptr; + numMerges = 0; + + while (p) { + numMerges++; + q = p; + pSize = 0; + for (i = 0; i < inSize; i++) { + pSize++; + q = q->nextZ; + if (!q) break; + } + + qSize = inSize; + + while (pSize > 0 || (qSize > 0 && q)) { + + if (pSize == 0) { + e = q; + q = q->nextZ; + qSize--; + } else if (qSize == 0 || !q) { + e = p; + p = p->nextZ; + pSize--; + } else if (p->z <= q->z) { + e = p; + p = p->nextZ; + pSize--; + } else { + e = q; + q = q->nextZ; + qSize--; + } + + if (tail) tail->nextZ = e; + else list = e; + + e->prevZ = tail; + tail = e; + } + + p = q; + } + + tail->nextZ = nullptr; + + if (numMerges <= 1) return list; + + inSize *= 2; + } +} + +// z-order of a Vertex given coords and size of the data bounding box +template <typename N> +int32_t Earcut<N>::zOrder(const double x_, const double y_) { + // coords are transformed into non-negative 15-bit integer range + int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size); + int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size); + + x = (x | (x << 8)) & 0x00FF00FF; + x = (x | (x << 4)) & 0x0F0F0F0F; + x = (x | (x << 2)) & 0x33333333; + x = (x | (x << 1)) & 0x55555555; + + y = (y | (y << 8)) & 0x00FF00FF; + y = (y | (y << 4)) & 0x0F0F0F0F; + y = (y | (y << 2)) & 0x33333333; + y = (y | (y << 1)) & 0x55555555; + + return x | (y << 1); +} + +// find the leftmost node of a polygon ring +template <typename N> +typename Earcut<N>::Node* +Earcut<N>::getLeftmost(Node* start) { + Node* p = start; + Node* leftmost = start; + do { + if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y)) + leftmost = p; + p = p->next; + } while (p != start); + + return leftmost; +} + +// check if a point lies within a convex triangle +template <typename N> +bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, +double cx, double cy, double px, double py) const { + return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && + (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && + (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0; +} + +// check if a diagonal between two polygon nodes is valid (lies in polygon interior) +template <typename N> +bool Earcut<N>::isValidDiagonal(Node* a, Node* b) { + // dones't intersect other edges + return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && + // locally visible + ((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && + // does not create opposite-facing sectors + (area(a->prev, a, b->prev) != 0.0 || area(a, b->prev, b) != 0.0)) || + // special zero-length case + (equals(a, b) && area(a->prev, a, a->next) > 0 && area(b->prev, b, b->next) > 0)); +} + +// signed area of a triangle +template <typename N> +double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const { + return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y); +} + +// check if two points are equal +template <typename N> +bool Earcut<N>::equals(const Node* p1, const Node* p2) { + return p1->x == p2->x && p1->y == p2->y; +} + +// check if two segments intersect +template <typename N> +bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) { + int o1 = sign(area(p1, q1, p2)); + int o2 = sign(area(p1, q1, q2)); + int o3 = sign(area(p2, q2, p1)); + int o4 = sign(area(p2, q2, q1)); + + if (o1 != o2 && o3 != o4) return true; // general case + + if (o1 == 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 + if (o2 == 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 + if (o3 == 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 + if (o4 == 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 + + return false; +} + +// for collinear points p, q, r, check if point q lies on segment pr +template <typename N> +bool Earcut<N>::onSegment(const Node* p, const Node* q, const Node* r) { + return q->x <= std::max<double>(p->x, r->x) && + q->x >= std::min<double>(p->x, r->x) && + q->y <= std::max<double>(p->y, r->y) && + q->y >= std::min<double>(p->y, r->y); +} + +template <typename N> +int Earcut<N>::sign(double val) { + return (0.0 < val) - (val < 0.0); +} + +// check if a polygon diagonal intersects any polygon segments +template <typename N> +bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) { + const Node* p = a; + do { + if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i && + intersects(p, p->next, a, b)) return true; + p = p->next; + } while (p != a); + + return false; +} + +// check if a polygon diagonal is locally inside the polygon +template <typename N> +bool Earcut<N>::locallyInside(const Node* a, const Node* b) { + return area(a->prev, a, a->next) < 0 ? + area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 : + area(a, b, a->prev) < 0 || area(a, a->next, b) < 0; +} + +// check if the middle Vertex of a polygon diagonal is inside the polygon +template <typename N> +bool Earcut<N>::middleInside(const Node* a, const Node* b) { + const Node* p = a; + bool inside = false; + double px = (a->x + b->x) / 2; + double py = (a->y + b->y) / 2; + do { + if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y && + (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x)) + inside = !inside; + p = p->next; + } while (p != a); + + return inside; +} + +// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits +// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a +// single ring +template <typename N> +typename Earcut<N>::Node* +Earcut<N>::splitPolygon(Node* a, Node* b) { + Node* a2 = nodes.construct(a->i, a->x, a->y); + Node* b2 = nodes.construct(b->i, b->x, b->y); + Node* an = a->next; + Node* bp = b->prev; + + a->next = b; + b->prev = a; + + a2->next = an; + an->prev = a2; + + b2->next = a2; + a2->prev = b2; + + bp->next = b2; + b2->prev = bp; + + return b2; +} + +// create a node and util::optionally link it with previous one (in a circular doubly linked list) +template <typename N> template <typename Point> +typename Earcut<N>::Node* +Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) { + Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt)); + + if (!last) { + p->prev = p; + p->next = p; + + } else { + assert(last); + p->next = last->next; + p->prev = last; + last->next->prev = p; + last->next = p; + } + return p; +} + +template <typename N> +void Earcut<N>::removeNode(Node* p) { + p->next->prev = p->prev; + p->prev->next = p->next; + + if (p->prevZ) p->prevZ->nextZ = p->nextZ; + if (p->nextZ) p->nextZ->prevZ = p->prevZ; +} +} + +template <typename N = uint32_t, typename Polygon> +std::vector<N> earcut(const Polygon& poly) { + mapbox::detail::Earcut<N> earcut; + earcut(poly); + return std::move(earcut.indices); +} +}
--- a/src/document.cpp Tue Jun 14 23:04:49 2022 +0300 +++ b/src/document.cpp Wed Jun 15 12:17:29 2022 +0300 @@ -18,11 +18,26 @@ #include <QMouseEvent> #include <QPainter> +#include "algorithm/earcut.h" #include "document.h" #include "model.h" #include "ui/objecteditor.h" #include "gl/partrenderer.h" +// Make mapbox::earcut work with glm::vec3 +namespace mapbox { +namespace util { +template<> struct nth<0, glm::vec3> +{ + static constexpr float get(const glm::vec3& t) { return t.x; }; +}; +template<> struct nth<1, glm::vec3> +{ + static constexpr float get(const glm::vec3& t) { return t.y; }; +}; +} +} + EditTools::EditTools(QObject* parent) : QObject{parent}, RenderLayer{} @@ -72,6 +87,10 @@ this->worldPosition = this->gridMatrix * glm::vec4{*this->worldPosition, 1}; this->polygon.back() = *this->worldPosition; } + this->numpoints = this->polygon.size(); + if (this->isCloseToExistingPoints()) { + this->numpoints -= 1; + } } static QVector<QPointF> convertWorldPointsToScreenPoints( @@ -152,7 +171,6 @@ .pointBrush = {Qt::white}, .pointPen = {QBrush{Qt::black}, 2.0}, .polygonPen = {QBrush{Qt::black}, 2.0, Qt::DashLine}, - .badPolygonPen = {QBrush{Qt::red}, 2.0, Qt::DashLine}, .greenPolygonBrush = {QColor{64, 255, 128, 192}}, .redPolygonBrush = {QColor{255, 96, 96, 192}}, }; @@ -160,7 +178,6 @@ .pointBrush = {Qt::black}, .pointPen = {QBrush{Qt::white}, 2.0}, .polygonPen = {QBrush{Qt::white}, 2.0, Qt::DashLine}, - .badPolygonPen = {QBrush{Qt::red}, 2.0, Qt::DashLine}, .greenPolygonBrush = {QColor{64, 255, 128, 192}}, .redPolygonBrush = {QColor{255, 96, 96, 192}}, }; @@ -169,7 +186,7 @@ case SelectMode: break; case DrawMode: - painter->setPen(this->isconcave ? pens.badPolygonPen : pens.polygonPen); + painter->setPen(pens.polygonPen); for (const ModelAction& action : this->actions()) { const opt<std::vector<glm::vec3>> points = modelActionPoints(action); if (points.has_value()) { @@ -201,13 +218,6 @@ } } -void EditTools::updatePreviewPolygon() -{ - if (this->polygon.size() > 2) { - this->isconcave = not isConvex(this->polygon); - } -} - void EditTools::removeLastPoint() { if (this->polygon.size() > 1) { @@ -215,12 +225,17 @@ } } -template<typename T> -bool isCloseToExistingPoints(T begin, T end, const glm::vec3 &pos) +bool EditTools::isCloseToExistingPoints() const { - return std::any_of(begin, end, [&pos](const glm::vec3& p){ - return isclose(pos, p); - }); + if (this->worldPosition.has_value()) { + const glm::vec3& pos = *this->worldPosition; + return std::any_of(this->polygon.begin(), this->polygon.end() - 1, [&pos](const glm::vec3& p){ + return isclose(pos, p); + }); + } + else { + return false; + } } EditingMode EditTools::currentEditingMode() const @@ -239,12 +254,11 @@ break; case DrawMode: if (event->button() == Qt::LeftButton and this->worldPosition.has_value()) { - if (isCloseToExistingPoints(this->polygon.begin(), this->polygon.end() - 1, *this->worldPosition)) { + if (isCloseToExistingPoints()) { this->closeShape(); } else { this->polygon.push_back(*this->worldPosition); - this->updatePreviewPolygon(); } } else if (true @@ -252,53 +266,142 @@ and this->polygon.size() > 1 ) { this->removeLastPoint(); - updatePreviewPolygon(); } break; } } +constexpr float distancesquared(const glm::vec3& p1, const glm::vec3& p2) +{ + const float dx = p2.x - p1.x; + const float dy = p2.y - p1.y; + const float dz = p2.z - p1.z; + return (dx * dx) + (dy * dy) + (dz * dz); +} + +inline float area(const Quadrilateral& q) +{ + return 0.5 * ( + glm::length(glm::cross(q.p2 - q.p1, q.p3 - q.p1)) + + glm::length(glm::cross(q.p3 - q.p2, q.p4 - q.p2)) + ); +} + +inline float energy(const Quadrilateral& q) +{ + const float L2 = distancesquared(q.p1, q.p2) + + distancesquared(q.p2, q.p3) + + distancesquared(q.p3, q.p4) + + distancesquared(q.p4, q.p1); + return 1 - 6.928203230275509 * area(q) / L2; +} + +struct MergedTriangles +{ + std::vector<Quadrilateral> quadrilaterals; + std::set<std::size_t> cutTriangles; +}; + +static MergedTriangles mergeTriangles( + const std::vector<std::uint16_t>& indices, + const std::vector<glm::vec3>& polygon) +{ + MergedTriangles result; + using indextype = std::uint16_t; + using indexpair = std::pair<indextype, indextype>; + struct boundaryinfo { indextype third; std::size_t triangleid; }; + std::map<indexpair, boundaryinfo> boundaries; + for (std::size_t i = 0; i < indices.size(); i += 3) { + const auto add = [&](int o1, int o2, int o3){ + const auto key = std::make_pair(indices[i + o1], indices[i + o2]); + boundaries[key] = {indices[i + o3], i}; + }; + add(0, 1, 2); + add(1, 2, 0); + add(2, 0, 1); + } + std::vector<std::array<indextype, 4>> quadindices; + std::vector<Quadrilateral> quads; + bool repeat = true; + const auto iscut = [&result](const std::size_t i){ + return result.cutTriangles.find(i) != result.cutTriangles.end(); + }; + while (repeat) { + repeat = false; + // TODO: make this a function that returns quadrilateral indices + // Go through triangle boundaries + for (const auto& it1 : boundaries) { + const indexpair& pair1 = it1.first; + const boundaryinfo& boundary1 = it1.second; + // .. the ones we haven't already merged anyway + if (not iscut(boundary1.triangleid)) { + // Look for its inverse boundary to find the touching triangle + const auto pair2 = std::make_pair(pair1.second, pair1.first); + const auto it2 = boundaries.find(pair2); + // Also if that hasn't been cut + if (it2 != boundaries.end() and not iscut(it2->second.triangleid)) { + const Quadrilateral quad{ + polygon[pair1.first], + polygon[it2->second.third], + polygon[pair1.second], + polygon[boundary1.third], + }; + if (isConvex(quad)) { + result.quadrilaterals.push_back(quad); + result.cutTriangles.insert(boundary1.triangleid); + result.cutTriangles.insert(it2->second.triangleid); + repeat = true; + } + } + } + } + } + return result; +} + const std::vector<ModelAction> EditTools::actions() const { std::vector<ModelAction> result; - if (this->polygon.size() >= 2 and this->polygon.size() <= 4) { - switch (this->polygon.size()) { - case 2: - result.push_back(AppendToModel{ - .newElement = Colored<LineSegment>{ - LineSegment{ - .p1 = this->polygon[0], - .p2 = this->polygon[1], - }, - EDGE_COLOR, - } - }); - break; - case 3: + if (this->numpoints == 2) { + result.push_back(AppendToModel{ + .newElement = Colored<LineSegment>{ + LineSegment{ + .p1 = this->polygon[0], + .p2 = this->polygon[1], + }, + EDGE_COLOR, + } + }); + } + else if (this->numpoints > 2) { + const glm::mat4 inverseGrid = glm::inverse(this->gridMatrix); + std::vector<std::vector<glm::vec3>> polygons{1}; + std::vector<glm::vec3>& polygon2d = polygons.back(); + polygon2d.reserve(this->numpoints); + for (std::size_t i = 0; i < this->numpoints; ++i) { + polygon2d.push_back(inverseGrid * glm::vec4{this->polygon[i], 1}); + } + using indextype = std::uint16_t; + const std::vector<indextype> indices = mapbox::earcut<std::uint16_t>(polygons); + MergedTriangles mergedTriangles = mergeTriangles(indices, this->polygon); + for (const Quadrilateral& quad : mergedTriangles.quadrilaterals) { result.push_back(AppendToModel{ - .newElement = Colored<Triangle>{ - Triangle{ - .p1 = this->polygon[0], - .p2 = this->polygon[1], - .p3 = this->polygon[2], - }, - MAIN_COLOR, - } + .newElement = Colored<Quadrilateral>{quad, MAIN_COLOR}, }); - break; - case 4: - result.push_back(AppendToModel{ - .newElement = Colored<Quadrilateral>{ - Quadrilateral{ - .p1 = this->polygon[0], - .p2 = this->polygon[1], - .p3 = this->polygon[2], - .p4 = this->polygon[3], - }, - MAIN_COLOR, - } - }); - break; + } + for (std::size_t i = 0; i < indices.size(); i += 3) { + if (mergedTriangles.cutTriangles.find(i) == mergedTriangles.cutTriangles.end()) { + result.push_back(AppendToModel{ + .newElement = Colored<Triangle>{ + Triangle{ + .p1 = this->polygon[indices[i]], + .p2 = this->polygon[indices[i + 1]], + .p3 = this->polygon[indices[i + 2]], + }, + MAIN_COLOR, + } + }); + } } } return result; @@ -310,5 +413,4 @@ Q_EMIT this->modelAction(action); } this->polygon.clear(); - this->updatePreviewPolygon(); }
--- a/src/document.h Tue Jun 14 23:04:49 2022 +0300 +++ b/src/document.h Wed Jun 15 12:17:29 2022 +0300 @@ -50,7 +50,7 @@ { Q_OBJECT std::vector<glm::vec3> polygon = {{0, 0, 0}}; - bool isconcave = false; + std::size_t numpoints = 1; EditingMode mode = SelectMode; glm::mat4 mvpMatrix; glm::mat4 gridMatrix{1}; @@ -76,6 +76,6 @@ private: const std::vector<ModelAction> actions() const; void closeShape(); - void updatePreviewPolygon(); void removeLastPoint(); + bool isCloseToExistingPoints() const; };
--- a/src/geometry.cpp Tue Jun 14 23:04:49 2022 +0300 +++ b/src/geometry.cpp Wed Jun 15 12:17:29 2022 +0300 @@ -199,6 +199,22 @@ }; } +bool isConvex(const Quadrilateral& quad) +{ + glm::vec3 crosses[4] = { + glm::cross(quad.p4 - quad.p1, quad.p2 - quad.p1), + glm::cross(quad.p1 - quad.p2, quad.p3 - quad.p2), + glm::cross(quad.p2 - quad.p3, quad.p4 - quad.p3), + glm::cross(quad.p3 - quad.p4, quad.p1 - quad.p4), + }; + return not std::any_of( + &crosses[1], + &crosses[4], + [&crosses](const glm::vec3& vector) { + return glm::dot(crosses[0], vector) < 1e-6; + }); +} + bool isConvex(const std::vector<glm::vec3>& polygon) { const int n = polygon.size();
--- a/src/geometry.h Tue Jun 14 23:04:49 2022 +0300 +++ b/src/geometry.h Wed Jun 15 12:17:29 2022 +0300 @@ -138,6 +138,7 @@ LineSegment2D bottom(const QRectF& rectangle); LineSegment2D left(const QRectF& rectangle); LineSegment2D right(const QRectF& rectangle); +bool isConvex(const Quadrilateral& quad); bool isConvex(const std::vector<glm::vec3>& polygon); Winding winding(const QPolygonF& polygon); struct ScalingExtract