Move earcut.h outside src/ directory

Tue, 28 Jun 2022 19:49:45 +0300

author
Teemu Piippo <teemu.s.piippo@gmail.com>
date
Tue, 28 Jun 2022 19:49:45 +0300
changeset 301
8ccd6fdb30dc
parent 300
3a4b132b8353
child 302
d59cb01d8031

Move earcut.h outside src/ directory

CMakeLists.txt file | annotate | diff | comparison | revisions
src/algorithm/earcut.h file | annotate | diff | comparison | revisions
src/layers/edittools.cpp file | annotate | diff | comparison | revisions
thirdparty/earcut.h file | annotate | diff | comparison | revisions
--- a/CMakeLists.txt	Tue Jun 28 19:47:34 2022 +0300
+++ b/CMakeLists.txt	Tue Jun 28 19:49:45 2022 +0300
@@ -110,7 +110,6 @@
 	src/uiutilities.h
 	src/version.h
 	src/vertexmap.h
-	src/algorithm/earcut.h
 	src/gl/basicshaderprogram.h
 	src/gl/common.h
 	src/gl/compiler.h
@@ -126,6 +125,7 @@
 	src/ui/objecteditor.h
 	src/widgets/colorindexinput.h
 	src/widgets/colorselectdialog.h
+	thirdparty/earcut.h
 )
 set(FORM_FILES
 	src/about.ui
--- a/src/algorithm/earcut.h	Tue Jun 28 19:47:34 2022 +0300
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,828 +0,0 @@
-#pragma once
-
-#include <algorithm>
-#include <cassert>
-#include <cmath>
-#include <cstddef>
-#include <limits>
-#include <memory>
-#include <utility>
-#include <vector>
-
-namespace mapbox {
-
-namespace util {
-
-template <std::size_t I, typename T> struct nth {
-    inline static typename std::tuple_element<I, T>::type
-    get(const T& t) { return std::get<I>(t); }
-};
-
-}
-
-namespace detail {
-
-template <typename N = uint32_t>
-class Earcut {
-public:
-    std::vector<N> indices;
-    std::size_t vertices = 0;
-
-    template <typename Polygon>
-    void operator()(const Polygon& points);
-
-private:
-    struct Node {
-        Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
-        Node(const Node&) = delete;
-        Node& operator=(const Node&) = delete;
-        Node(Node&&) = delete;
-        Node& operator=(Node&&) = delete;
-
-        const N i;
-        const double x;
-        const double y;
-
-        // previous and next vertice nodes in a polygon ring
-        Node* prev = nullptr;
-        Node* next = nullptr;
-
-        // z-order curve value
-        int32_t z = 0;
-
-        // previous and next nodes in z-order
-        Node* prevZ = nullptr;
-        Node* nextZ = nullptr;
-
-        // indicates whether this is a steiner point
-        bool steiner = false;
-    };
-
-    template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
-    Node* filterPoints(Node* start, Node* end = nullptr);
-    void earcutLinked(Node* ear, int pass = 0);
-    bool isEar(Node* ear);
-    bool isEarHashed(Node* ear);
-    Node* cureLocalIntersections(Node* start);
-    void splitEarcut(Node* start);
-    template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
-    Node* eliminateHole(Node* hole, Node* outerNode);
-    Node* findHoleBridge(Node* hole, Node* outerNode);
-    bool sectorContainsSector(const Node* m, const Node* p);
-    void indexCurve(Node* start);
-    Node* sortLinked(Node* list);
-    int32_t zOrder(const double x_, const double y_);
-    Node* getLeftmost(Node* start);
-    bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
-    bool isValidDiagonal(Node* a, Node* b);
-    double area(const Node* p, const Node* q, const Node* r) const;
-    bool equals(const Node* p1, const Node* p2);
-    bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
-    bool onSegment(const Node* p, const Node* q, const Node* r);
-    int sign(double val);
-    bool intersectsPolygon(const Node* a, const Node* b);
-    bool locallyInside(const Node* a, const Node* b);
-    bool middleInside(const Node* a, const Node* b);
-    Node* splitPolygon(Node* a, Node* b);
-    template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last);
-    void removeNode(Node* p);
-
-    bool hashing;
-    double minX, maxX;
-    double minY, maxY;
-    double inv_size = 0;
-
-    template <typename T, typename Alloc = std::allocator<T>>
-    class ObjectPool {
-    public:
-        ObjectPool() { }
-        ObjectPool(std::size_t blockSize_) {
-            reset(blockSize_);
-        }
-        ~ObjectPool() {
-            clear();
-        }
-        template <typename... Args>
-        T* construct(Args&&... args) {
-            if (currentIndex >= blockSize) {
-                currentBlock = alloc_traits::allocate(alloc, blockSize);
-                allocations.emplace_back(currentBlock);
-                currentIndex = 0;
-            }
-            T* object = &currentBlock[currentIndex++];
-            alloc_traits::construct(alloc, object, std::forward<Args>(args)...);
-            return object;
-        }
-        void reset(std::size_t newBlockSize) {
-            for (auto allocation : allocations) {
-                alloc_traits::deallocate(alloc, allocation, blockSize);
-            }
-            allocations.clear();
-            blockSize = std::max<std::size_t>(1, newBlockSize);
-            currentBlock = nullptr;
-            currentIndex = blockSize;
-        }
-        void clear() { reset(blockSize); }
-    private:
-        T* currentBlock = nullptr;
-        std::size_t currentIndex = 1;
-        std::size_t blockSize = 1;
-        std::vector<T*> allocations;
-        Alloc alloc;
-        typedef typename std::allocator_traits<Alloc> alloc_traits;
-    };
-    ObjectPool<Node> nodes;
-};
-
-template <typename N> template <typename Polygon>
-void Earcut<N>::operator()(const Polygon& points) {
-    // reset
-    indices.clear();
-    vertices = 0;
-
-    if (points.empty()) return;
-
-    double x;
-    double y;
-    int threshold = 80;
-    std::size_t len = 0;
-
-    for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
-        threshold -= static_cast<int>(points[i].size());
-        len += points[i].size();
-    }
-
-    //estimate size of nodes and indices
-    nodes.reset(len * 3 / 2);
-    indices.reserve(len + points[0].size());
-
-    Node* outerNode = linkedList(points[0], true);
-    if (!outerNode || outerNode->prev == outerNode->next) return;
-
-    if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
-
-    // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
-    hashing = threshold < 0;
-    if (hashing) {
-        Node* p = outerNode->next;
-        minX = maxX = outerNode->x;
-        minY = maxY = outerNode->y;
-        do {
-            x = p->x;
-            y = p->y;
-            minX = std::min<double>(minX, x);
-            minY = std::min<double>(minY, y);
-            maxX = std::max<double>(maxX, x);
-            maxY = std::max<double>(maxY, y);
-            p = p->next;
-        } while (p != outerNode);
-
-        // minX, minY and size are later used to transform coords into integers for z-order calculation
-        inv_size = std::max<double>(maxX - minX, maxY - minY);
-        inv_size = inv_size != .0 ? (1. / inv_size) : .0;
-    }
-
-    earcutLinked(outerNode);
-
-    nodes.clear();
-}
-
-// create a circular doubly linked list from polygon points in the specified winding order
-template <typename N> template <typename Ring>
-typename Earcut<N>::Node*
-Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
-    using Point = typename Ring::value_type;
-    double sum = 0;
-    const std::size_t len = points.size();
-    std::size_t i, j;
-    Node* last = nullptr;
-
-    // calculate original winding order of a polygon ring
-    for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
-        const auto& p1 = points[i];
-        const auto& p2 = points[j];
-        const double p20 = util::nth<0, Point>::get(p2);
-        const double p10 = util::nth<0, Point>::get(p1);
-        const double p11 = util::nth<1, Point>::get(p1);
-        const double p21 = util::nth<1, Point>::get(p2);
-        sum += (p20 - p10) * (p11 + p21);
-    }
-
-    // link points into circular doubly-linked list in the specified winding order
-    if (clockwise == (sum > 0)) {
-        for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
-    } else {
-        for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
-    }
-
-    if (last && equals(last, last->next)) {
-        removeNode(last);
-        last = last->next;
-    }
-
-    vertices += len;
-
-    return last;
-}
-
-// eliminate colinear or duplicate points
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::filterPoints(Node* start, Node* end) {
-    if (!end) end = start;
-
-    Node* p = start;
-    bool again;
-    do {
-        again = false;
-
-        if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
-            removeNode(p);
-            p = end = p->prev;
-
-            if (p == p->next) break;
-            again = true;
-
-        } else {
-            p = p->next;
-        }
-    } while (again || p != end);
-
-    return end;
-}
-
-// main ear slicing loop which triangulates a polygon (given as a linked list)
-template <typename N>
-void Earcut<N>::earcutLinked(Node* ear, int pass) {
-    if (!ear) return;
-
-    // interlink polygon nodes in z-order
-    if (!pass && hashing) indexCurve(ear);
-
-    Node* stop = ear;
-    Node* prev;
-    Node* next;
-
-    int iterations = 0;
-
-    // iterate through ears, slicing them one by one
-    while (ear->prev != ear->next) {
-        iterations++;
-        prev = ear->prev;
-        next = ear->next;
-
-        if (hashing ? isEarHashed(ear) : isEar(ear)) {
-            // cut off the triangle
-            indices.emplace_back(prev->i);
-            indices.emplace_back(ear->i);
-            indices.emplace_back(next->i);
-
-            removeNode(ear);
-
-            // skipping the next vertice leads to less sliver triangles
-            ear = next->next;
-            stop = next->next;
-
-            continue;
-        }
-
-        ear = next;
-
-        // if we looped through the whole remaining polygon and can't find any more ears
-        if (ear == stop) {
-            // try filtering points and slicing again
-            if (!pass) earcutLinked(filterPoints(ear), 1);
-
-            // if this didn't work, try curing all small self-intersections locally
-            else if (pass == 1) {
-                ear = cureLocalIntersections(filterPoints(ear));
-                earcutLinked(ear, 2);
-
-            // as a last resort, try splitting the remaining polygon into two
-            } else if (pass == 2) splitEarcut(ear);
-
-            break;
-        }
-    }
-}
-
-// check whether a polygon node forms a valid ear with adjacent nodes
-template <typename N>
-bool Earcut<N>::isEar(Node* ear) {
-    const Node* a = ear->prev;
-    const Node* b = ear;
-    const Node* c = ear->next;
-
-    if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
-
-    // now make sure we don't have other points inside the potential ear
-    Node* p = ear->next->next;
-
-    while (p != ear->prev) {
-        if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
-            area(p->prev, p, p->next) >= 0) return false;
-        p = p->next;
-    }
-
-    return true;
-}
-
-template <typename N>
-bool Earcut<N>::isEarHashed(Node* ear) {
-    const Node* a = ear->prev;
-    const Node* b = ear;
-    const Node* c = ear->next;
-
-    if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
-
-    // triangle bbox; min & max are calculated like this for speed
-    const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
-    const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
-    const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
-    const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
-
-    // z-order range for the current triangle bbox;
-    const int32_t minZ = zOrder(minTX, minTY);
-    const int32_t maxZ = zOrder(maxTX, maxTY);
-
-    // first look for points inside the triangle in increasing z-order
-    Node* p = ear->nextZ;
-
-    while (p && p->z <= maxZ) {
-        if (p != ear->prev && p != ear->next &&
-            pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
-            area(p->prev, p, p->next) >= 0) return false;
-        p = p->nextZ;
-    }
-
-    // then look for points in decreasing z-order
-    p = ear->prevZ;
-
-    while (p && p->z >= minZ) {
-        if (p != ear->prev && p != ear->next &&
-            pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
-            area(p->prev, p, p->next) >= 0) return false;
-        p = p->prevZ;
-    }
-
-    return true;
-}
-
-// go through all polygon nodes and cure small local self-intersections
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::cureLocalIntersections(Node* start) {
-    Node* p = start;
-    do {
-        Node* a = p->prev;
-        Node* b = p->next->next;
-
-        // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
-        if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
-            indices.emplace_back(a->i);
-            indices.emplace_back(p->i);
-            indices.emplace_back(b->i);
-
-            // remove two nodes involved
-            removeNode(p);
-            removeNode(p->next);
-
-            p = start = b;
-        }
-        p = p->next;
-    } while (p != start);
-
-    return filterPoints(p);
-}
-
-// try splitting polygon into two and triangulate them independently
-template <typename N>
-void Earcut<N>::splitEarcut(Node* start) {
-    // look for a valid diagonal that divides the polygon into two
-    Node* a = start;
-    do {
-        Node* b = a->next->next;
-        while (b != a->prev) {
-            if (a->i != b->i && isValidDiagonal(a, b)) {
-                // split the polygon in two by the diagonal
-                Node* c = splitPolygon(a, b);
-
-                // filter colinear points around the cuts
-                a = filterPoints(a, a->next);
-                c = filterPoints(c, c->next);
-
-                // run earcut on each half
-                earcutLinked(a);
-                earcutLinked(c);
-                return;
-            }
-            b = b->next;
-        }
-        a = a->next;
-    } while (a != start);
-}
-
-// link every hole into the outer loop, producing a single-ring polygon without holes
-template <typename N> template <typename Polygon>
-typename Earcut<N>::Node*
-Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
-    const size_t len = points.size();
-
-    std::vector<Node*> queue;
-    for (size_t i = 1; i < len; i++) {
-        Node* list = linkedList(points[i], false);
-        if (list) {
-            if (list == list->next) list->steiner = true;
-            queue.push_back(getLeftmost(list));
-        }
-    }
-    std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
-        return a->x < b->x;
-    });
-
-    // process holes from left to right
-    for (size_t i = 0; i < queue.size(); i++) {
-        outerNode = eliminateHole(queue[i], outerNode);
-        outerNode = filterPoints(outerNode, outerNode->next);
-    }
-
-    return outerNode;
-}
-
-// find a bridge between vertices that connects hole with an outer ring and and link it
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
-    Node* bridge = findHoleBridge(hole, outerNode);
-    if (!bridge) {
-        return outerNode;
-    }
-
-    Node* bridgeReverse = splitPolygon(bridge, hole);
-
-    // filter collinear points around the cuts
-    Node* filteredBridge = filterPoints(bridge, bridge->next);
-    filterPoints(bridgeReverse, bridgeReverse->next);
-
-    // Check if input node was removed by the filtering
-    return outerNode == bridge ? filteredBridge : outerNode;
-}
-
-// David Eberly's algorithm for finding a bridge between hole and outer polygon
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
-    Node* p = outerNode;
-    double hx = hole->x;
-    double hy = hole->y;
-    double qx = -std::numeric_limits<double>::infinity();
-    Node* m = nullptr;
-
-    // find a segment intersected by a ray from the hole's leftmost Vertex to the left;
-    // segment's endpoint with lesser x will be potential connection Vertex
-    do {
-        if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
-          double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
-          if (x <= hx && x > qx) {
-            qx = x;
-            if (x == hx) {
-                if (hy == p->y) return p;
-                if (hy == p->next->y) return p->next;
-            }
-            m = p->x < p->next->x ? p : p->next;
-          }
-        }
-        p = p->next;
-    } while (p != outerNode);
-
-    if (!m) return 0;
-
-    if (hx == qx) return m; // hole touches outer segment; pick leftmost endpoint
-
-    // look for points inside the triangle of hole Vertex, segment intersection and endpoint;
-    // if there are no points found, we have a valid connection;
-    // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
-
-    const Node* stop = m;
-    double tanMin = std::numeric_limits<double>::infinity();
-    double tanCur = 0;
-
-    p = m;
-    double mx = m->x;
-    double my = m->y;
-
-    do {
-        if (hx >= p->x && p->x >= mx && hx != p->x &&
-            pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
-
-            tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
-
-            if (locallyInside(p, hole) &&
-                (tanCur < tanMin || (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) {
-                m = p;
-                tanMin = tanCur;
-            }
-        }
-
-        p = p->next;
-    } while (p != stop);
-
-    return m;
-}
-
-// whether sector in vertex m contains sector in vertex p in the same coordinates
-template <typename N>
-bool Earcut<N>::sectorContainsSector(const Node* m, const Node* p) {
-    return area(m->prev, m, p->prev) < 0 && area(p->next, m, m->next) < 0;
-}
-
-// interlink polygon nodes in z-order
-template <typename N>
-void Earcut<N>::indexCurve(Node* start) {
-    assert(start);
-    Node* p = start;
-
-    do {
-        p->z = p->z ? p->z : zOrder(p->x, p->y);
-        p->prevZ = p->prev;
-        p->nextZ = p->next;
-        p = p->next;
-    } while (p != start);
-
-    p->prevZ->nextZ = nullptr;
-    p->prevZ = nullptr;
-
-    sortLinked(p);
-}
-
-// Simon Tatham's linked list merge sort algorithm
-// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::sortLinked(Node* list) {
-    assert(list);
-    Node* p;
-    Node* q;
-    Node* e;
-    Node* tail;
-    int i, numMerges, pSize, qSize;
-    int inSize = 1;
-
-    for (;;) {
-        p = list;
-        list = nullptr;
-        tail = nullptr;
-        numMerges = 0;
-
-        while (p) {
-            numMerges++;
-            q = p;
-            pSize = 0;
-            for (i = 0; i < inSize; i++) {
-                pSize++;
-                q = q->nextZ;
-                if (!q) break;
-            }
-
-            qSize = inSize;
-
-            while (pSize > 0 || (qSize > 0 && q)) {
-
-                if (pSize == 0) {
-                    e = q;
-                    q = q->nextZ;
-                    qSize--;
-                } else if (qSize == 0 || !q) {
-                    e = p;
-                    p = p->nextZ;
-                    pSize--;
-                } else if (p->z <= q->z) {
-                    e = p;
-                    p = p->nextZ;
-                    pSize--;
-                } else {
-                    e = q;
-                    q = q->nextZ;
-                    qSize--;
-                }
-
-                if (tail) tail->nextZ = e;
-                else list = e;
-
-                e->prevZ = tail;
-                tail = e;
-            }
-
-            p = q;
-        }
-
-        tail->nextZ = nullptr;
-
-        if (numMerges <= 1) return list;
-
-        inSize *= 2;
-    }
-}
-
-// z-order of a Vertex given coords and size of the data bounding box
-template <typename N>
-int32_t Earcut<N>::zOrder(const double x_, const double y_) {
-    // coords are transformed into non-negative 15-bit integer range
-    int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size);
-    int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size);
-
-    x = (x | (x << 8)) & 0x00FF00FF;
-    x = (x | (x << 4)) & 0x0F0F0F0F;
-    x = (x | (x << 2)) & 0x33333333;
-    x = (x | (x << 1)) & 0x55555555;
-
-    y = (y | (y << 8)) & 0x00FF00FF;
-    y = (y | (y << 4)) & 0x0F0F0F0F;
-    y = (y | (y << 2)) & 0x33333333;
-    y = (y | (y << 1)) & 0x55555555;
-
-    return x | (y << 1);
-}
-
-// find the leftmost node of a polygon ring
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::getLeftmost(Node* start) {
-    Node* p = start;
-    Node* leftmost = start;
-    do {
-        if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y))
-            leftmost = p;
-        p = p->next;
-    } while (p != start);
-
-    return leftmost;
-}
-
-// check if a point lies within a convex triangle
-template <typename N>
-bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, 
-double cx, double cy, double px, double py) const {
-    return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
-           (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
-           (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
-}
-
-// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
-template <typename N>
-bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
-	// dones't intersect other edges
-    return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && 
-	// locally visible
-           ((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) &&
-	// does not create opposite-facing sectors
-            (area(a->prev, a, b->prev) != 0.0 || area(a, b->prev, b) != 0.0)) ||
-	// special zero-length case
-            (equals(a, b) && area(a->prev, a, a->next) > 0 && area(b->prev, b, b->next) > 0));
-}
-
-// signed area of a triangle
-template <typename N>
-double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
-    return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
-}
-
-// check if two points are equal
-template <typename N>
-bool Earcut<N>::equals(const Node* p1, const Node* p2) {
-    return p1->x == p2->x && p1->y == p2->y;
-}
-
-// check if two segments intersect
-template <typename N>
-bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
-    int o1 = sign(area(p1, q1, p2));
-    int o2 = sign(area(p1, q1, q2));
-    int o3 = sign(area(p2, q2, p1));
-    int o4 = sign(area(p2, q2, q1));
-
-    if (o1 != o2 && o3 != o4) return true; // general case
-
-    if (o1 == 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
-    if (o2 == 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
-    if (o3 == 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
-    if (o4 == 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
-
-    return false;
-}
-
-// for collinear points p, q, r, check if point q lies on segment pr
-template <typename N>
-bool Earcut<N>::onSegment(const Node* p, const Node* q, const Node* r) {
-    return q->x <= std::max<double>(p->x, r->x) &&
-        q->x >= std::min<double>(p->x, r->x) &&
-        q->y <= std::max<double>(p->y, r->y) &&
-        q->y >= std::min<double>(p->y, r->y);
-}
-
-template <typename N>
-int Earcut<N>::sign(double val) {
-    return (0.0 < val) - (val < 0.0);
-}
-
-// check if a polygon diagonal intersects any polygon segments
-template <typename N>
-bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
-    const Node* p = a;
-    do {
-        if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
-                intersects(p, p->next, a, b)) return true;
-        p = p->next;
-    } while (p != a);
-
-    return false;
-}
-
-// check if a polygon diagonal is locally inside the polygon
-template <typename N>
-bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
-    return area(a->prev, a, a->next) < 0 ?
-        area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
-        area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
-}
-
-// check if the middle Vertex of a polygon diagonal is inside the polygon
-template <typename N>
-bool Earcut<N>::middleInside(const Node* a, const Node* b) {
-    const Node* p = a;
-    bool inside = false;
-    double px = (a->x + b->x) / 2;
-    double py = (a->y + b->y) / 2;
-    do {
-        if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
-                (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
-            inside = !inside;
-        p = p->next;
-    } while (p != a);
-
-    return inside;
-}
-
-// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
-// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
-// single ring
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::splitPolygon(Node* a, Node* b) {
-    Node* a2 = nodes.construct(a->i, a->x, a->y);
-    Node* b2 = nodes.construct(b->i, b->x, b->y);
-    Node* an = a->next;
-    Node* bp = b->prev;
-
-    a->next = b;
-    b->prev = a;
-
-    a2->next = an;
-    an->prev = a2;
-
-    b2->next = a2;
-    a2->prev = b2;
-
-    bp->next = b2;
-    b2->prev = bp;
-
-    return b2;
-}
-
-// create a node and util::optionally link it with previous one (in a circular doubly linked list)
-template <typename N> template <typename Point>
-typename Earcut<N>::Node*
-Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) {
-    Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
-
-    if (!last) {
-        p->prev = p;
-        p->next = p;
-
-    } else {
-        assert(last);
-        p->next = last->next;
-        p->prev = last;
-        last->next->prev = p;
-        last->next = p;
-    }
-    return p;
-}
-
-template <typename N>
-void Earcut<N>::removeNode(Node* p) {
-    p->next->prev = p->prev;
-    p->prev->next = p->next;
-
-    if (p->prevZ) p->prevZ->nextZ = p->nextZ;
-    if (p->nextZ) p->nextZ->prevZ = p->prevZ;
-}
-}
-
-template <typename N = uint32_t, typename Polygon>
-std::vector<N> earcut(const Polygon& poly) {
-    mapbox::detail::Earcut<N> earcut;
-    earcut(poly);
-    return std::move(earcut.indices);
-}
-}
--- a/src/layers/edittools.cpp	Tue Jun 28 19:47:34 2022 +0300
+++ b/src/layers/edittools.cpp	Tue Jun 28 19:49:45 2022 +0300
@@ -18,7 +18,7 @@
 
 #include <QMouseEvent>
 #include <QPainter>
-#include "src/algorithm/earcut.h"
+#include "thirdparty/earcut.h"
 #include "src/model.h"
 #include "src/ui/objecteditor.h"
 #include "src/gl/partrenderer.h"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thirdparty/earcut.h	Tue Jun 28 19:49:45 2022 +0300
@@ -0,0 +1,828 @@
+#pragma once
+
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <cstddef>
+#include <limits>
+#include <memory>
+#include <utility>
+#include <vector>
+
+namespace mapbox {
+
+namespace util {
+
+template <std::size_t I, typename T> struct nth {
+    inline static typename std::tuple_element<I, T>::type
+    get(const T& t) { return std::get<I>(t); }
+};
+
+}
+
+namespace detail {
+
+template <typename N = uint32_t>
+class Earcut {
+public:
+    std::vector<N> indices;
+    std::size_t vertices = 0;
+
+    template <typename Polygon>
+    void operator()(const Polygon& points);
+
+private:
+    struct Node {
+        Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
+        Node(const Node&) = delete;
+        Node& operator=(const Node&) = delete;
+        Node(Node&&) = delete;
+        Node& operator=(Node&&) = delete;
+
+        const N i;
+        const double x;
+        const double y;
+
+        // previous and next vertice nodes in a polygon ring
+        Node* prev = nullptr;
+        Node* next = nullptr;
+
+        // z-order curve value
+        int32_t z = 0;
+
+        // previous and next nodes in z-order
+        Node* prevZ = nullptr;
+        Node* nextZ = nullptr;
+
+        // indicates whether this is a steiner point
+        bool steiner = false;
+    };
+
+    template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
+    Node* filterPoints(Node* start, Node* end = nullptr);
+    void earcutLinked(Node* ear, int pass = 0);
+    bool isEar(Node* ear);
+    bool isEarHashed(Node* ear);
+    Node* cureLocalIntersections(Node* start);
+    void splitEarcut(Node* start);
+    template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
+    Node* eliminateHole(Node* hole, Node* outerNode);
+    Node* findHoleBridge(Node* hole, Node* outerNode);
+    bool sectorContainsSector(const Node* m, const Node* p);
+    void indexCurve(Node* start);
+    Node* sortLinked(Node* list);
+    int32_t zOrder(const double x_, const double y_);
+    Node* getLeftmost(Node* start);
+    bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
+    bool isValidDiagonal(Node* a, Node* b);
+    double area(const Node* p, const Node* q, const Node* r) const;
+    bool equals(const Node* p1, const Node* p2);
+    bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
+    bool onSegment(const Node* p, const Node* q, const Node* r);
+    int sign(double val);
+    bool intersectsPolygon(const Node* a, const Node* b);
+    bool locallyInside(const Node* a, const Node* b);
+    bool middleInside(const Node* a, const Node* b);
+    Node* splitPolygon(Node* a, Node* b);
+    template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last);
+    void removeNode(Node* p);
+
+    bool hashing;
+    double minX, maxX;
+    double minY, maxY;
+    double inv_size = 0;
+
+    template <typename T, typename Alloc = std::allocator<T>>
+    class ObjectPool {
+    public:
+        ObjectPool() { }
+        ObjectPool(std::size_t blockSize_) {
+            reset(blockSize_);
+        }
+        ~ObjectPool() {
+            clear();
+        }
+        template <typename... Args>
+        T* construct(Args&&... args) {
+            if (currentIndex >= blockSize) {
+                currentBlock = alloc_traits::allocate(alloc, blockSize);
+                allocations.emplace_back(currentBlock);
+                currentIndex = 0;
+            }
+            T* object = &currentBlock[currentIndex++];
+            alloc_traits::construct(alloc, object, std::forward<Args>(args)...);
+            return object;
+        }
+        void reset(std::size_t newBlockSize) {
+            for (auto allocation : allocations) {
+                alloc_traits::deallocate(alloc, allocation, blockSize);
+            }
+            allocations.clear();
+            blockSize = std::max<std::size_t>(1, newBlockSize);
+            currentBlock = nullptr;
+            currentIndex = blockSize;
+        }
+        void clear() { reset(blockSize); }
+    private:
+        T* currentBlock = nullptr;
+        std::size_t currentIndex = 1;
+        std::size_t blockSize = 1;
+        std::vector<T*> allocations;
+        Alloc alloc;
+        typedef typename std::allocator_traits<Alloc> alloc_traits;
+    };
+    ObjectPool<Node> nodes;
+};
+
+template <typename N> template <typename Polygon>
+void Earcut<N>::operator()(const Polygon& points) {
+    // reset
+    indices.clear();
+    vertices = 0;
+
+    if (points.empty()) return;
+
+    double x;
+    double y;
+    int threshold = 80;
+    std::size_t len = 0;
+
+    for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
+        threshold -= static_cast<int>(points[i].size());
+        len += points[i].size();
+    }
+
+    //estimate size of nodes and indices
+    nodes.reset(len * 3 / 2);
+    indices.reserve(len + points[0].size());
+
+    Node* outerNode = linkedList(points[0], true);
+    if (!outerNode || outerNode->prev == outerNode->next) return;
+
+    if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
+
+    // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
+    hashing = threshold < 0;
+    if (hashing) {
+        Node* p = outerNode->next;
+        minX = maxX = outerNode->x;
+        minY = maxY = outerNode->y;
+        do {
+            x = p->x;
+            y = p->y;
+            minX = std::min<double>(minX, x);
+            minY = std::min<double>(minY, y);
+            maxX = std::max<double>(maxX, x);
+            maxY = std::max<double>(maxY, y);
+            p = p->next;
+        } while (p != outerNode);
+
+        // minX, minY and size are later used to transform coords into integers for z-order calculation
+        inv_size = std::max<double>(maxX - minX, maxY - minY);
+        inv_size = inv_size != .0 ? (1. / inv_size) : .0;
+    }
+
+    earcutLinked(outerNode);
+
+    nodes.clear();
+}
+
+// create a circular doubly linked list from polygon points in the specified winding order
+template <typename N> template <typename Ring>
+typename Earcut<N>::Node*
+Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
+    using Point = typename Ring::value_type;
+    double sum = 0;
+    const std::size_t len = points.size();
+    std::size_t i, j;
+    Node* last = nullptr;
+
+    // calculate original winding order of a polygon ring
+    for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
+        const auto& p1 = points[i];
+        const auto& p2 = points[j];
+        const double p20 = util::nth<0, Point>::get(p2);
+        const double p10 = util::nth<0, Point>::get(p1);
+        const double p11 = util::nth<1, Point>::get(p1);
+        const double p21 = util::nth<1, Point>::get(p2);
+        sum += (p20 - p10) * (p11 + p21);
+    }
+
+    // link points into circular doubly-linked list in the specified winding order
+    if (clockwise == (sum > 0)) {
+        for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
+    } else {
+        for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
+    }
+
+    if (last && equals(last, last->next)) {
+        removeNode(last);
+        last = last->next;
+    }
+
+    vertices += len;
+
+    return last;
+}
+
+// eliminate colinear or duplicate points
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::filterPoints(Node* start, Node* end) {
+    if (!end) end = start;
+
+    Node* p = start;
+    bool again;
+    do {
+        again = false;
+
+        if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
+            removeNode(p);
+            p = end = p->prev;
+
+            if (p == p->next) break;
+            again = true;
+
+        } else {
+            p = p->next;
+        }
+    } while (again || p != end);
+
+    return end;
+}
+
+// main ear slicing loop which triangulates a polygon (given as a linked list)
+template <typename N>
+void Earcut<N>::earcutLinked(Node* ear, int pass) {
+    if (!ear) return;
+
+    // interlink polygon nodes in z-order
+    if (!pass && hashing) indexCurve(ear);
+
+    Node* stop = ear;
+    Node* prev;
+    Node* next;
+
+    int iterations = 0;
+
+    // iterate through ears, slicing them one by one
+    while (ear->prev != ear->next) {
+        iterations++;
+        prev = ear->prev;
+        next = ear->next;
+
+        if (hashing ? isEarHashed(ear) : isEar(ear)) {
+            // cut off the triangle
+            indices.emplace_back(prev->i);
+            indices.emplace_back(ear->i);
+            indices.emplace_back(next->i);
+
+            removeNode(ear);
+
+            // skipping the next vertice leads to less sliver triangles
+            ear = next->next;
+            stop = next->next;
+
+            continue;
+        }
+
+        ear = next;
+
+        // if we looped through the whole remaining polygon and can't find any more ears
+        if (ear == stop) {
+            // try filtering points and slicing again
+            if (!pass) earcutLinked(filterPoints(ear), 1);
+
+            // if this didn't work, try curing all small self-intersections locally
+            else if (pass == 1) {
+                ear = cureLocalIntersections(filterPoints(ear));
+                earcutLinked(ear, 2);
+
+            // as a last resort, try splitting the remaining polygon into two
+            } else if (pass == 2) splitEarcut(ear);
+
+            break;
+        }
+    }
+}
+
+// check whether a polygon node forms a valid ear with adjacent nodes
+template <typename N>
+bool Earcut<N>::isEar(Node* ear) {
+    const Node* a = ear->prev;
+    const Node* b = ear;
+    const Node* c = ear->next;
+
+    if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+
+    // now make sure we don't have other points inside the potential ear
+    Node* p = ear->next->next;
+
+    while (p != ear->prev) {
+        if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+            area(p->prev, p, p->next) >= 0) return false;
+        p = p->next;
+    }
+
+    return true;
+}
+
+template <typename N>
+bool Earcut<N>::isEarHashed(Node* ear) {
+    const Node* a = ear->prev;
+    const Node* b = ear;
+    const Node* c = ear->next;
+
+    if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+
+    // triangle bbox; min & max are calculated like this for speed
+    const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
+    const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
+    const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
+    const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
+
+    // z-order range for the current triangle bbox;
+    const int32_t minZ = zOrder(minTX, minTY);
+    const int32_t maxZ = zOrder(maxTX, maxTY);
+
+    // first look for points inside the triangle in increasing z-order
+    Node* p = ear->nextZ;
+
+    while (p && p->z <= maxZ) {
+        if (p != ear->prev && p != ear->next &&
+            pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+            area(p->prev, p, p->next) >= 0) return false;
+        p = p->nextZ;
+    }
+
+    // then look for points in decreasing z-order
+    p = ear->prevZ;
+
+    while (p && p->z >= minZ) {
+        if (p != ear->prev && p != ear->next &&
+            pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+            area(p->prev, p, p->next) >= 0) return false;
+        p = p->prevZ;
+    }
+
+    return true;
+}
+
+// go through all polygon nodes and cure small local self-intersections
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::cureLocalIntersections(Node* start) {
+    Node* p = start;
+    do {
+        Node* a = p->prev;
+        Node* b = p->next->next;
+
+        // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
+        if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
+            indices.emplace_back(a->i);
+            indices.emplace_back(p->i);
+            indices.emplace_back(b->i);
+
+            // remove two nodes involved
+            removeNode(p);
+            removeNode(p->next);
+
+            p = start = b;
+        }
+        p = p->next;
+    } while (p != start);
+
+    return filterPoints(p);
+}
+
+// try splitting polygon into two and triangulate them independently
+template <typename N>
+void Earcut<N>::splitEarcut(Node* start) {
+    // look for a valid diagonal that divides the polygon into two
+    Node* a = start;
+    do {
+        Node* b = a->next->next;
+        while (b != a->prev) {
+            if (a->i != b->i && isValidDiagonal(a, b)) {
+                // split the polygon in two by the diagonal
+                Node* c = splitPolygon(a, b);
+
+                // filter colinear points around the cuts
+                a = filterPoints(a, a->next);
+                c = filterPoints(c, c->next);
+
+                // run earcut on each half
+                earcutLinked(a);
+                earcutLinked(c);
+                return;
+            }
+            b = b->next;
+        }
+        a = a->next;
+    } while (a != start);
+}
+
+// link every hole into the outer loop, producing a single-ring polygon without holes
+template <typename N> template <typename Polygon>
+typename Earcut<N>::Node*
+Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
+    const size_t len = points.size();
+
+    std::vector<Node*> queue;
+    for (size_t i = 1; i < len; i++) {
+        Node* list = linkedList(points[i], false);
+        if (list) {
+            if (list == list->next) list->steiner = true;
+            queue.push_back(getLeftmost(list));
+        }
+    }
+    std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
+        return a->x < b->x;
+    });
+
+    // process holes from left to right
+    for (size_t i = 0; i < queue.size(); i++) {
+        outerNode = eliminateHole(queue[i], outerNode);
+        outerNode = filterPoints(outerNode, outerNode->next);
+    }
+
+    return outerNode;
+}
+
+// find a bridge between vertices that connects hole with an outer ring and and link it
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
+    Node* bridge = findHoleBridge(hole, outerNode);
+    if (!bridge) {
+        return outerNode;
+    }
+
+    Node* bridgeReverse = splitPolygon(bridge, hole);
+
+    // filter collinear points around the cuts
+    Node* filteredBridge = filterPoints(bridge, bridge->next);
+    filterPoints(bridgeReverse, bridgeReverse->next);
+
+    // Check if input node was removed by the filtering
+    return outerNode == bridge ? filteredBridge : outerNode;
+}
+
+// David Eberly's algorithm for finding a bridge between hole and outer polygon
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
+    Node* p = outerNode;
+    double hx = hole->x;
+    double hy = hole->y;
+    double qx = -std::numeric_limits<double>::infinity();
+    Node* m = nullptr;
+
+    // find a segment intersected by a ray from the hole's leftmost Vertex to the left;
+    // segment's endpoint with lesser x will be potential connection Vertex
+    do {
+        if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
+          double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
+          if (x <= hx && x > qx) {
+            qx = x;
+            if (x == hx) {
+                if (hy == p->y) return p;
+                if (hy == p->next->y) return p->next;
+            }
+            m = p->x < p->next->x ? p : p->next;
+          }
+        }
+        p = p->next;
+    } while (p != outerNode);
+
+    if (!m) return 0;
+
+    if (hx == qx) return m; // hole touches outer segment; pick leftmost endpoint
+
+    // look for points inside the triangle of hole Vertex, segment intersection and endpoint;
+    // if there are no points found, we have a valid connection;
+    // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
+
+    const Node* stop = m;
+    double tanMin = std::numeric_limits<double>::infinity();
+    double tanCur = 0;
+
+    p = m;
+    double mx = m->x;
+    double my = m->y;
+
+    do {
+        if (hx >= p->x && p->x >= mx && hx != p->x &&
+            pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
+
+            tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
+
+            if (locallyInside(p, hole) &&
+                (tanCur < tanMin || (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) {
+                m = p;
+                tanMin = tanCur;
+            }
+        }
+
+        p = p->next;
+    } while (p != stop);
+
+    return m;
+}
+
+// whether sector in vertex m contains sector in vertex p in the same coordinates
+template <typename N>
+bool Earcut<N>::sectorContainsSector(const Node* m, const Node* p) {
+    return area(m->prev, m, p->prev) < 0 && area(p->next, m, m->next) < 0;
+}
+
+// interlink polygon nodes in z-order
+template <typename N>
+void Earcut<N>::indexCurve(Node* start) {
+    assert(start);
+    Node* p = start;
+
+    do {
+        p->z = p->z ? p->z : zOrder(p->x, p->y);
+        p->prevZ = p->prev;
+        p->nextZ = p->next;
+        p = p->next;
+    } while (p != start);
+
+    p->prevZ->nextZ = nullptr;
+    p->prevZ = nullptr;
+
+    sortLinked(p);
+}
+
+// Simon Tatham's linked list merge sort algorithm
+// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::sortLinked(Node* list) {
+    assert(list);
+    Node* p;
+    Node* q;
+    Node* e;
+    Node* tail;
+    int i, numMerges, pSize, qSize;
+    int inSize = 1;
+
+    for (;;) {
+        p = list;
+        list = nullptr;
+        tail = nullptr;
+        numMerges = 0;
+
+        while (p) {
+            numMerges++;
+            q = p;
+            pSize = 0;
+            for (i = 0; i < inSize; i++) {
+                pSize++;
+                q = q->nextZ;
+                if (!q) break;
+            }
+
+            qSize = inSize;
+
+            while (pSize > 0 || (qSize > 0 && q)) {
+
+                if (pSize == 0) {
+                    e = q;
+                    q = q->nextZ;
+                    qSize--;
+                } else if (qSize == 0 || !q) {
+                    e = p;
+                    p = p->nextZ;
+                    pSize--;
+                } else if (p->z <= q->z) {
+                    e = p;
+                    p = p->nextZ;
+                    pSize--;
+                } else {
+                    e = q;
+                    q = q->nextZ;
+                    qSize--;
+                }
+
+                if (tail) tail->nextZ = e;
+                else list = e;
+
+                e->prevZ = tail;
+                tail = e;
+            }
+
+            p = q;
+        }
+
+        tail->nextZ = nullptr;
+
+        if (numMerges <= 1) return list;
+
+        inSize *= 2;
+    }
+}
+
+// z-order of a Vertex given coords and size of the data bounding box
+template <typename N>
+int32_t Earcut<N>::zOrder(const double x_, const double y_) {
+    // coords are transformed into non-negative 15-bit integer range
+    int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size);
+    int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size);
+
+    x = (x | (x << 8)) & 0x00FF00FF;
+    x = (x | (x << 4)) & 0x0F0F0F0F;
+    x = (x | (x << 2)) & 0x33333333;
+    x = (x | (x << 1)) & 0x55555555;
+
+    y = (y | (y << 8)) & 0x00FF00FF;
+    y = (y | (y << 4)) & 0x0F0F0F0F;
+    y = (y | (y << 2)) & 0x33333333;
+    y = (y | (y << 1)) & 0x55555555;
+
+    return x | (y << 1);
+}
+
+// find the leftmost node of a polygon ring
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::getLeftmost(Node* start) {
+    Node* p = start;
+    Node* leftmost = start;
+    do {
+        if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y))
+            leftmost = p;
+        p = p->next;
+    } while (p != start);
+
+    return leftmost;
+}
+
+// check if a point lies within a convex triangle
+template <typename N>
+bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, 
+double cx, double cy, double px, double py) const {
+    return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
+           (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
+           (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
+}
+
+// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
+template <typename N>
+bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
+	// dones't intersect other edges
+    return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && 
+	// locally visible
+           ((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) &&
+	// does not create opposite-facing sectors
+            (area(a->prev, a, b->prev) != 0.0 || area(a, b->prev, b) != 0.0)) ||
+	// special zero-length case
+            (equals(a, b) && area(a->prev, a, a->next) > 0 && area(b->prev, b, b->next) > 0));
+}
+
+// signed area of a triangle
+template <typename N>
+double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
+    return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
+}
+
+// check if two points are equal
+template <typename N>
+bool Earcut<N>::equals(const Node* p1, const Node* p2) {
+    return p1->x == p2->x && p1->y == p2->y;
+}
+
+// check if two segments intersect
+template <typename N>
+bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
+    int o1 = sign(area(p1, q1, p2));
+    int o2 = sign(area(p1, q1, q2));
+    int o3 = sign(area(p2, q2, p1));
+    int o4 = sign(area(p2, q2, q1));
+
+    if (o1 != o2 && o3 != o4) return true; // general case
+
+    if (o1 == 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
+    if (o2 == 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
+    if (o3 == 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
+    if (o4 == 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
+
+    return false;
+}
+
+// for collinear points p, q, r, check if point q lies on segment pr
+template <typename N>
+bool Earcut<N>::onSegment(const Node* p, const Node* q, const Node* r) {
+    return q->x <= std::max<double>(p->x, r->x) &&
+        q->x >= std::min<double>(p->x, r->x) &&
+        q->y <= std::max<double>(p->y, r->y) &&
+        q->y >= std::min<double>(p->y, r->y);
+}
+
+template <typename N>
+int Earcut<N>::sign(double val) {
+    return (0.0 < val) - (val < 0.0);
+}
+
+// check if a polygon diagonal intersects any polygon segments
+template <typename N>
+bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
+    const Node* p = a;
+    do {
+        if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
+                intersects(p, p->next, a, b)) return true;
+        p = p->next;
+    } while (p != a);
+
+    return false;
+}
+
+// check if a polygon diagonal is locally inside the polygon
+template <typename N>
+bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
+    return area(a->prev, a, a->next) < 0 ?
+        area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
+        area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
+}
+
+// check if the middle Vertex of a polygon diagonal is inside the polygon
+template <typename N>
+bool Earcut<N>::middleInside(const Node* a, const Node* b) {
+    const Node* p = a;
+    bool inside = false;
+    double px = (a->x + b->x) / 2;
+    double py = (a->y + b->y) / 2;
+    do {
+        if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
+                (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
+            inside = !inside;
+        p = p->next;
+    } while (p != a);
+
+    return inside;
+}
+
+// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
+// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
+// single ring
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::splitPolygon(Node* a, Node* b) {
+    Node* a2 = nodes.construct(a->i, a->x, a->y);
+    Node* b2 = nodes.construct(b->i, b->x, b->y);
+    Node* an = a->next;
+    Node* bp = b->prev;
+
+    a->next = b;
+    b->prev = a;
+
+    a2->next = an;
+    an->prev = a2;
+
+    b2->next = a2;
+    a2->prev = b2;
+
+    bp->next = b2;
+    b2->prev = bp;
+
+    return b2;
+}
+
+// create a node and util::optionally link it with previous one (in a circular doubly linked list)
+template <typename N> template <typename Point>
+typename Earcut<N>::Node*
+Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) {
+    Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
+
+    if (!last) {
+        p->prev = p;
+        p->next = p;
+
+    } else {
+        assert(last);
+        p->next = last->next;
+        p->prev = last;
+        last->next->prev = p;
+        last->next = p;
+    }
+    return p;
+}
+
+template <typename N>
+void Earcut<N>::removeNode(Node* p) {
+    p->next->prev = p->prev;
+    p->prev->next = p->next;
+
+    if (p->prevZ) p->prevZ->nextZ = p->nextZ;
+    if (p->nextZ) p->nextZ->prevZ = p->prevZ;
+}
+}
+
+template <typename N = uint32_t, typename Polygon>
+std::vector<N> earcut(const Polygon& poly) {
+    mapbox::detail::Earcut<N> earcut;
+    earcut(poly);
+    return std::move(earcut.indices);
+}
+}

mercurial