Sun, 12 Sep 2021 12:14:32 +0300
Moved automatic grid adjusting into a new action
/* * LDForge: LDraw parts authoring CAD * Copyright (C) 2013 - 2018 Teemu Piippo * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #define GL_GLEXT_PROTOTYPES #include <GL/glu.h> #include <GL/glext.h> #include <QMessageBox> #include "gl/compiler.h" #include "documentmanager.h" #include "invert.h" #include "ring.h" static const char* vertexShaderSource = R"( #version 330 core layout(location=0) in vec3 position; layout(location=1) in vec4 color; layout(location=2) in vec3 normal; layout(location=3) in int id; layout(location=4) in int selected; out vec4 vColor; out vec3 vFragPos; out vec3 vNormal; uniform mat4 modelMatrix; uniform mat4 viewMatrix; uniform mat4 projectionMatrix; uniform int fragmentStyle; uniform vec3 selectedColor; uniform int highlighted; const int FRAGSTYLE_Normal = 0; const int FRAGSTYLE_BfcGreen = 1; const int FRAGSTYLE_BfcRed = 2; const int FRAGSTYLE_Random = 3; const int FRAGSTYLE_Id = 4; const int FRAGSTYLE_Black = 5; void main() { mat3 normalMatrix = transpose(inverse(mat3(modelMatrix))); vNormal = normalize(normalMatrix * normal); if (fragmentStyle == FRAGSTYLE_Id) { /* Calculate a color based from this index. This method caters for * 16777216 objects. I don't think that will be exceeded anytime soon. */ int r = (id / 0x10000) % 0x100; int g = (id / 0x100) % 0x100; int b = id % 0x100; vColor = vec4(r / 255.0, g / 255.0, b / 255.0, 1.0); } else if (selected == 1) { vColor = vec4(selectedColor, 1.0); } else { if (fragmentStyle == FRAGSTYLE_BfcGreen) { vColor = vec4(0.2, 0.9, 0.2, 1.0); } else if (fragmentStyle == FRAGSTYLE_BfcRed) { vColor = vec4(0.9, 0.2, 0.2, 1.0); } else if (fragmentStyle == FRAGSTYLE_Black) { vColor = vec4(0.0, 0.0, 0.0, 1.0); } else { vColor = color; } if (highlighted == id) { vColor = (vColor + vec4(selectedColor, 1.0) * 0.6) / 1.6; } } vFragPos = vec3(modelMatrix * vec4(position, 1.0)); gl_Position = projectionMatrix * viewMatrix * vec4(vFragPos, 1.0); } )"; static const char* fragmentShaderSource = R"( #version 330 core in vec4 vColor; in vec3 vFragPos; in vec3 vNormal; out vec4 fColor; const vec3 lightPos = vec3(0.5, 0.5, 0.5); const vec4 lightColor = vec4(1.0, 1.0, 1.0, 1.0); const float ambientStrength = 0.7; uniform bool useLighting; void main() { if (useLighting) { vec4 ambient = ambientStrength * lightColor; vec3 lightDirection = normalize(lightPos - vFragPos); vec4 diffuse = max(dot(vNormal, lightDirection), 0.0) * lightColor; fColor = (ambient + diffuse) * vColor; } else { fColor = vColor; } } )"; gl::Compiler::Compiler(const ldraw::ColorTable& colorTable, QObject* parent) : QObject{parent}, colorTable{colorTable} { } gl::Compiler::~Compiler() { } void gl::buildShaders( QOpenGLShaderProgram* shaderProgram, const char* vertexShaderSource, const char* fragmentShaderSource) { shaderProgram->create(); const bool vertexShaderCompiled = shaderProgram->addShaderFromSourceCode(QOpenGLShader::Vertex, vertexShaderSource); QString log; if (not vertexShaderCompiled) { log += "\n" + QObject::tr("Vertex shader:") + "\n" + shaderProgram->log(); } const bool fragmentShaderCompiled = shaderProgram->addShaderFromSourceCode( QOpenGLShader::Fragment, fragmentShaderSource); if (not fragmentShaderCompiled) { log += "\n" + QObject::tr("Fragment shader:") + "\n" + shaderProgram->log(); } if (not vertexShaderCompiled or not fragmentShaderCompiled) { QMessageBox::critical( nullptr, QObject::tr("Shader compile error"), QObject::tr("Could not compile shaders.") + "\n" + log); std::exit(-1); } const bool linkSuccessful = shaderProgram->link(); if (not linkSuccessful) { QMessageBox::critical( nullptr, QObject::tr("Shader link error"), QObject::tr("Could not link shaders: %1").arg(shaderProgram->log()) ); } } void gl::Compiler::initialize() { if (not this->initialized) { this->initializeOpenGLFunctions(); for (auto& object : this->glObjects) { object.program = new QOpenGLShaderProgram; gl::buildShaders(object.program, ::vertexShaderSource, ::fragmentShaderSource); object.program->bind(); object.buffer.create(); object.buffer.bind(); object.buffer.setUsagePattern(QOpenGLBuffer::DynamicDraw); object.vertexArray.create(); object.vertexArray.bind(); for (int k : {0, 1, 2, 3, 4}) { object.program->enableAttributeArray(k); } constexpr int stride = sizeof(Vertex); object.program->setAttributeBuffer(0, GL_FLOAT, offsetof(Vertex, position), 3, stride); object.program->setAttributeBuffer(1, GL_FLOAT, offsetof(Vertex, color), 4, stride); object.program->setAttributeBuffer(2, GL_FLOAT, offsetof(Vertex, normal), 3, stride); glVertexAttribIPointer(3, 1, GL_INT, stride, reinterpret_cast<void*>(offsetof(Vertex, id))); glVertexAttribIPointer(4, 1, GL_INT, stride, reinterpret_cast<void*>(offsetof(Vertex, selected))); object.vertexArray.release(); object.buffer.release(); object.program->release(); } this->initialized = true; } } void gl::Compiler::build(Model* model, DocumentManager* context, const gl::RenderPreferences& preferences) { this->boundingBox = {}; std::vector<Vertex> vboData[gl::NUM_POLYGON_TYPES]; const std::vector<gl::Polygon> polygons = model->getPolygons(context); for (const gl::Polygon& polygon : polygons) { this->buildPolygon(polygon, vboData, preferences); } for (int arrayId = 0; arrayId < gl::NUM_POLYGON_TYPES; arrayId += 1) { auto& buffer = this->glObjects[arrayId].buffer; auto& vector = vboData[arrayId]; this->storedVertexCounts[arrayId] = vector.size(); this->glObjects[arrayId].cachedData = vector; // todo: get rid of this copy buffer.bind(); buffer.allocate(vector.data(), static_cast<int>(vector.size() * sizeof vector[0])); buffer.release(); } } gl::ArrayClass classifyPolygon(const gl::Polygon& polygon) { switch (polygon.type) { case gl::Polygon::EdgeLine: return gl::ArrayClass::Lines; case gl::Polygon::Triangle: return gl::ArrayClass::Triangles; case gl::Polygon::Quadrilateral: return gl::ArrayClass::Quads; case gl::Polygon::ConditionalEdge: return gl::ArrayClass::ConditionalLines; } return gl::ArrayClass::Lines; } ldraw::id_t gl::Compiler::idFromColor(const std::array<GLubyte, 3>& data) { return {data[0] * std::int32_t{0x10000} + data[1] * std::int32_t{0x100} + data[2]}; } void gl::Compiler::buildPolygon( gl::Polygon polygon, std::vector<Vertex>* vboData, const gl::RenderPreferences& preferences) { const gl::ArrayClass vboClass = classifyPolygon(polygon); std::vector<Vertex>& vertexBuffer = vboData[static_cast<int>(vboClass)]; auto vertexRing = iter::ring(polygon.vertices, polygon.numPolygonVertices()); reserveMore(vertexBuffer, polygon.numPolygonVertices()); const QColor color = this->getColorForPolygon(polygon, preferences); for (unsigned int i = 0; i < polygon.numPolygonVertices(); i += 1) { const glm::vec3& v1 = vertexRing[i - 1]; const glm::vec3& v2 = vertexRing[i]; const glm::vec3& v3 = vertexRing[i + 1]; this->boundingBox.consider(polygon.vertices[i]); Vertex& vertex = vertexBuffer.emplace_back(); vertex.position = polygon.vertices[i]; vertex.normal = glm::normalize(glm::cross(v1 - v2, v3 - v2)); vertex.color = glm::vec4{color.redF(), color.greenF(), color.blueF(), color.alphaF()}; vertex.id = polygon.id.value; } } QColor gl::Compiler::getColorForPolygon(const gl::Polygon& polygon, const gl::RenderPreferences& preferences) { QColor color; // For normal colors, use the polygon's color. if (polygon.color == ldraw::mainColor) { color = preferences.mainColor; } else if (polygon.color == ldraw::edgeColor) { // Edge color is black, unless we have a dark background, in which case lines need to be bright. color = luma(preferences.backgroundColor) > (40.0 / 256.0) ? Qt::black : Qt::white; } else { // Not main or edge color, use the polygon's color as is. color = this->colorTable[polygon.color].faceColor; } return color; } glm::vec3 gl::Compiler::modelCenter() const { return boxCenter(this->boundingBox); } double gl::Compiler::modelDistance() const { return static_cast<double>(longestMeasure(this->boundingBox)); } void gl::Compiler::bindVertexArray(gl::ArrayClass arrayClass) { auto& object = this->glObjects[static_cast<int>(arrayClass)]; object.vertexArray.bind(); object.program->bind(); } void gl::Compiler::releaseVertexArray(gl::ArrayClass arrayClass) { auto& object = this->glObjects[static_cast<int>(arrayClass)]; object.program->release(); object.vertexArray.release(); } void gl::Compiler::setSelectedObjects(const QSet<ldraw::id_t> ids) { for (auto& object : this->glObjects) { std::vector<Vertex>& vector = object.cachedData; for (Vertex& vertex : vector) { vertex.selected = (ids.contains({vertex.id})) ? 1 : 0; } const GLsizeiptr size = static_cast<int>(vector.size() * sizeof vector[0]); object.buffer.bind(); glBufferSubData(GL_ARRAY_BUFFER, 0, size, vector.data()); object.buffer.release(); } } std::size_t gl::Compiler::vertexCount(const gl::ArrayClass arrayClass) const { return this->storedVertexCounts[static_cast<int>(arrayClass)]; }