Sat, 05 Mar 2022 13:18:40 +0200
Icons update
#include <QMouseEvent> #include <QPainter> #include "canvas.h" Canvas::Canvas( Model* model, DocumentManager* documents, const ldraw::ColorTable& colorTable, QWidget* parent) : PartRenderer{model, documents, colorTable, parent} { this->setMouseTracking(true); } /** * @brief Handles a change of selection * @param selectedIds IDs of objects to select * @param deselectedIds IDs of objects to deselect. */ void Canvas::handleSelectionChange(const QSet<ldraw::id_t>& selectedIds, const QSet<ldraw::id_t>& deselectedIds) { Q_ASSERT(not selectedIds.contains(ldraw::NULL_ID)); this->selection.subtract(deselectedIds); this->selection.unite(selectedIds); this->compiler->setSelectedObjects(this->selection); this->update(); } /** * @brief Updates vertex rendering * @param document Document to get vertices from */ void Canvas::rebuildVertices(Document* document) { if (this->vertexProgram.has_value()) { this->vertexProgram->build(document); this->update(); } } void Canvas::mouseMoveEvent(QMouseEvent* event) { const ldraw::id_t id = this->pick(event->pos()); this->highlighted = id; this->totalMouseMove += (event->pos() - this->lastMousePosition).manhattanLength(); this->worldPosition = this->screenToModelCoordinates(event->pos(), this->gridPlane); if (this->worldPosition.has_value()) { /* * Snap the position to grid. This procedure is basically the "change of basis" and almost follows the * Aโปยน ร M ร A formula which is used to perform a transformation in some other coordinate system, except * we actually use the inverted matrix first and the regular one last to perform the transformation of * grid coordinates in our XY coordinate system. Also, we're rounding the coordinates which is obviously * not a linear transformation, but fits the pattern anyway. */ // First transform the coordinates to the XY plane... this->worldPosition = glm::inverse(this->gridMatrix) * glm::vec4{*this->worldPosition, 1}; // Then round the coordinates to integer precision... this->worldPosition = glm::round(*this->worldPosition); // And finally transform it back to grid coordinates by transforming it with the // grid matrix. this->worldPosition = this->gridMatrix * glm::vec4{*this->worldPosition, 1}; } Q_EMIT this->mouseMove(this, event); PartRenderer::mouseMoveEvent(event); this->update(); } void Canvas::mousePressEvent(QMouseEvent* event) { this->totalMouseMove = 0; this->lastMousePosition = event->pos(); PartRenderer::mousePressEvent(event); } void Canvas::mouseReleaseEvent(QMouseEvent* event) { if (this->totalMouseMove < (2.0 / sqrt(2)) * 5.0) { Q_EMIT this->mouseClick(this, event); } PartRenderer::mouseReleaseEvent(event); this->update(); } void Canvas::initializeGL() { // We first create the grid program and connect everything and only then call the part renderer's initialization // functions so that when initialization sets up, the signals also set up the matrices on our side. this->gridProgram.emplace(this); this->gridProgram->initialize(); this->axesProgram.emplace(this); this->axesProgram->initialize(); this->vertexProgram.emplace(this); this->vertexProgram->initialize(); for (AbstractBasicShaderProgram* program : { static_cast<AbstractBasicShaderProgram*>(&*this->gridProgram), static_cast<AbstractBasicShaderProgram*>(&*this->axesProgram), static_cast<AbstractBasicShaderProgram*>(&*this->vertexProgram), }) { connect(this, &PartRenderer::projectionMatrixChanged, program, &AbstractBasicShaderProgram::setProjectionMatrix); connect(this, &PartRenderer::modelMatrixChanged, program, &AbstractBasicShaderProgram::setModelMatrix); connect(this, &PartRenderer::viewMatrixChanged, program, &AbstractBasicShaderProgram::setViewMatrix); } connect(this, &PartRenderer::renderPreferencesChanged, [&]() { if (this->gridProgram.has_value()) { const bool isDark = luma(this->renderPreferences.backgroundColor) < 0.25; this->gridProgram->setGridColor(isDark ? Qt::white : Qt::black); } }); PartRenderer::initializeGL(); // Set up XZ grid matrix this->setGridMatrix({{1, 0, 0, 0}, {0, 0, 1, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}}); } void Canvas::paintGL() { PartRenderer::paintGL(); if (this->renderPreferences.style != gl::RenderStyle::PickScene) { // Render axes { glLineWidth(5); glEnable(GL_LINE_SMOOTH); glHint(GL_LINE_SMOOTH_HINT, GL_NICEST); this->axesProgram->draw(); glDisable(GL_LINE_SMOOTH); } // Render vertices { glLineWidth(1.5); glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); glEnable(GL_LINE_SMOOTH); glHint(GL_LINE_SMOOTH_HINT, GL_NICEST); this->vertexProgram->draw(); glDisable(GL_LINE_SMOOTH); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } // Render grid { glLineWidth(1); glEnable(GL_BLEND); glLineStipple(1, 0x8888); glEnable(GL_LINE_STIPPLE); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); this->gridProgram->draw(); glDisable(GL_BLEND); glDisable(GL_LINE_STIPPLE); } if (this->worldPosition.has_value()) { QPainter painter{this}; painter.setRenderHint(QPainter::Antialiasing); painter.setPen(Qt::black); painter.setBrush(Qt::green); const QPointF pos = this->modelToScreenCoordinates(*this->worldPosition); painter.drawEllipse(pos, 5, 5); painter.setPen(Qt::white); painter.drawText(pos + QPointF{5, 5}, vectorToString(*this->worldPosition)); } { QPainter painter{this}; painter.setRenderHint(QPainter::Antialiasing); QFont font; //font.setStyle(QFont::StyleItalic); painter.setFont(font); QFontMetrics fontMetrics{font}; const auto renderText = [&](const QString& text, const geom::PointOnRectagle& intersection) { QPointF position = toQPointF(intersection.position); const geom::RectangleSide side = intersection.side; switch (side) { case geom::RectangleSide::Top: position += QPointF{0, static_cast<qreal>(fontMetrics.ascent())}; break; case geom::RectangleSide::Left: break; case geom::RectangleSide::Bottom: position += QPointF{0, static_cast<qreal>(-fontMetrics.descent())}; break; case geom::RectangleSide::Right: position += QPointF{static_cast<qreal>(-fontMetrics.horizontalAdvance(text)), 0}; break; } painter.drawText(position, text); }; const QRectF box {QPointF{0, 0}, sizeToSizeF(this->size())}; const QPointF p1 = this->modelToScreenCoordinates(glm::vec3{0, 0, 0}); static const struct { QString text; glm::vec3 direction; } directions[] = { {"+๐ฅ", {1, 0, 0}}, {"-๐ฅ", {-1, 0, 0}}, {"+๐ฆ", {0, 1, 0}}, {"-๐ฆ", {0, -1, 0}}, {"+๐ง", {0, 0, 1}}, {"-๐ง", {0, 0, -1}}, }; for (const auto& axis : directions) { const QPointF x_p = this->modelToScreenCoordinates(axis.direction); const auto intersection = geom::rayRectangleIntersection( geom::rayFromPoints(toVec2(p1), toVec2(x_p)), box); if (intersection.has_value()) { renderText(axis.text, *intersection); } } if (this->overpaintCallback != nullptr) { this->overpaintCallback(this, &painter); } } } } /** * @brief Draws a polygon to where the specified vector of 3D points would appear on the screen. * @param painter Painter to use to draw with * @param points 3D points to render */ void Canvas::drawWorldPolygon(QPainter* painter, const std::vector<glm::vec3> &points) { QVector<QPointF> points2d; points2d.reserve(points.size()); for (const glm::vec3& point : points) { points2d.push_back(this->modelToScreenCoordinates(point)); } painter->drawPolygon(QPolygonF{points2d}); } /** * @brief Gets the current position of the cursor in the model * @return 3D vector */ const std::optional<glm::vec3>& Canvas::getWorldPosition() const { return this->worldPosition; } /** * @brief Adjusts the grid to be so that it is perpendicular to the camera. */ void Canvas::adjustGridToView() { const glm::vec3 cameraDirection = this->cameraVector(); const glm::vec3 vector_x = glm::normalize(this->gridMatrix * glm::vec4{1, 0, 0, 1}); const glm::vec3 vector_y = glm::normalize(this->gridMatrix * glm::vec4{0, 1, 0, 1}); const float angle_x = std::abs(glm::dot(vector_x, cameraDirection)); const float angle_y = std::abs(glm::dot(vector_y, cameraDirection)); if (angle_x < angle_y) { this->setGridMatrix(glm::rotate(this->gridMatrix, PI<float> / 2, glm::vec3{1, 0, 0})); } else { this->setGridMatrix(glm::rotate(this->gridMatrix, PI<float> / 2, glm::vec3{0, 1, 0})); } this->update(); } /** * @brief Paints a circle at where @c worldPoint is located on the screen. * @param painter Painter to use to render * @param worldPoint Point to render */ void Canvas::drawWorldPoint(QPainter* painter, const glm::vec3& worldPoint) const { const QPointF center = this->modelToScreenCoordinates(worldPoint); painter->drawEllipse(geom::inscribe(geom::CircleF{center, 5})); } /** * @brief Changes the grid matrix to the one specified. Updates relevant member variables. * @param newMatrix New matrix to use */ void Canvas::setGridMatrix(const glm::mat4& newMatrix) { this->gridMatrix = newMatrix; const geom::Triangle triangle { this->gridMatrix * glm::vec4{0, 0, 0, 1}, this->gridMatrix * glm::vec4{1, 0, 0, 1}, this->gridMatrix * glm::vec4{0, 1, 0, 1}, }; this->gridPlane = geom::planeFromTriangle(triangle); this->gridProgram->setGridMatrix(this->gridMatrix); } /** * @brief Gets the current camera vector, i.e. the vector from the camera to the grid origin. * @return vector */ glm::vec3 Canvas::cameraVector() const { // Find out where the grid is projected on the screen const QPoint gridOrigin2d = pointFToPoint(this->modelToScreenCoordinates(this->gridPlane.anchor)); // Find out which direction the camera is looking at the grid origin in 3d return glm::normalize(this->cameraLine(gridOrigin2d).direction); } /** * @brief Calculates whether the screen is perpendicular to the current grid * @return bool */ bool Canvas::isGridPerpendicularToScreen(float threshold) const { const glm::vec3 cameraDirection = this->cameraVector(); // Compute the dot product. The parameters given are: // - the normal of the grid plane, which is the vector from the grid origin perpendicular to the grid // - the direction of the camera looking at the grid, which is the inverse of the vector from the grid // origin towards the camera // If the dot product between these two vectors is 0, the grid normal is perpendicular to the camera vector // and the grid is perpendicular to the screen. const float dot = glm::dot(glm::normalize(this->gridPlane.normal), glm::normalize(cameraDirection)); return std::abs(dot) < threshold; } /** * @brief Clears the selection. */ void Canvas::clearSelection() { this->selection.clear(); this->compiler->setSelectedObjects(this->selection); Q_EMIT selectionChanged(this->selection); this->update(); } /** * @brief Adds an object to selection. * @param id ID of object to add */ void Canvas::addToSelection(ldraw::id_t id) { this->selection.insert(id); this->compiler->setSelectedObjects(this->selection); Q_EMIT selectionChanged(this->selection); this->update(); } void Canvas::setOverpaintCallback(Canvas::OverpaintCallback fn) { this->overpaintCallback = fn; }