Wed, 22 Sep 2021 13:28:53 +0300
Document model.h
#include <glm/gtc/matrix_transform.hpp> #include "geometry.h" #include "main.h" #include "ring.h" /** * @brief Computes line-plane intersection * @param line * @param plane * @return point of intersection. Does not return a value if the line is in parallel to the plane. */ std::optional<glm::vec3> geom::linePlaneIntersection( const geom::Line<3>& line, const geom::Plane& plane, const float epsilon) { const float denominator = glm::dot(line.direction, plane.normal); if (std::abs(denominator) < epsilon) { return {}; } else { const float d = glm::dot(plane.anchor - line.anchor, plane.normal) / denominator; return line.anchor + d * line.direction; } } /** * @brief Computes the plane of a triangle * @param triangle * @return plane */ geom::Plane geom::planeFromTriangle(const geom::Triangle& triangle) { return geom::Plane{normalVector(triangle), triangle.points[0]}; } /** * @brief Computes the normal vector of a triangle * @param triangle * @return normal vector */ glm::vec3 geom::normalVector(const geom::Triangle& triangle) { return glm::normalize( glm::cross( triangle.points[1] - triangle.points[0], triangle.points[2] - triangle.points[0])); } /** * @brief Extracts the scaling component of the specified matrix into a vector and returns both the scaling * components as well as the unscaled matrix. * @param matrix Matrix to compute * @return scaling vector and unscaled matrix */ geom::ScalingExtract geom::extractScaling(const glm::mat4& matrix) { geom::ScalingExtract result; result.scaling = geom::scalingVector(matrix); result.unscaled = glm::scale(matrix, 1.0f / result.scaling); return result; } /** * @brief Computes the scaling vector, which contains the scaling of the specified matrix * @param matrix * @return scaling vector */ glm::vec3 geom::scalingVector(const glm::mat4 matrix) { auto component = [](const glm::mat4& matrix, const int i) -> float { return std::hypot(std::hypot(matrix[i][0], matrix[i][1]), matrix[i][2]); }; return glm::vec3{component(matrix, 0), component(matrix, 1), component(matrix, 2)}; } std::optional<glm::vec2> geom::lineLineIntersection(const Line<2>& line_1, const Line<2>& line_2) { const float denominator = (line_1.direction.x * line_2.direction.y) - (line_1.direction.y * line_2.direction.x); constexpr float epsilon = 1e-6f; if (std::abs(denominator) < epsilon) { return {}; } else { const glm::vec2 p1 = line_1.anchor + line_1.direction; const glm::vec2& p2 = line_1.anchor; const glm::vec2 p3 = line_2.anchor + line_2.direction; const glm::vec2& p4 = line_2.anchor; const float a = glm::determinant(glm::mat2{{p1.x, p2.x}, {p1.y, p2.y}}); const float b = glm::determinant(glm::mat2{{p3.x, p4.x}, {p3.y, p4.y}}); const float c_x = glm::determinant(glm::mat2{{p1.x, p2.x}, {1, 1}}); const float c_y = glm::determinant(glm::mat2{{p1.y, p2.y}, {1, 1}}); const float d_x = glm::determinant(glm::mat2{{p3.x, p4.x}, {1, 1}}); const float d_y = glm::determinant(glm::mat2{{p3.y, p4.y}, {1, 1}}); const float x = glm::determinant(glm::mat2{{a, b}, {c_x, d_x}}); const float y = glm::determinant(glm::mat2{{a, b}, {c_y, d_y}}); return glm::vec2{x / denominator, y / denominator}; } } std::optional<glm::vec2> geom::rayLineSegmentIntersection(const Ray<2>& ray, const LineSegment2D& line) { std::optional<glm::vec2> result = lineLineIntersection( rayToLine(ray), lineFromPoints(line.points[0], line.points[1])); if (result.has_value()) { const float d1 = glm::dot(*result - ray.anchor, ray.direction); if (d1 < 0) { result.reset(); } else { const float d2 = glm::dot(*result - line.points[0], *result - line.points[1]); if (d2 > 0) { result.reset(); } } } return result; } std::optional<geom::PointOnRectagle> geom::rayRectangleIntersection(const Ray<2>& ray, const QRectF& rectangle) { std::optional<glm::vec2> position; std::optional<PointOnRectagle> result; // Try top position = rayLineSegmentIntersection(ray, top(rectangle)); if (position.has_value()) { result = {*position, RectangleSide::Top}; } else { // Try bottom position = rayLineSegmentIntersection(ray, bottom(rectangle)); if (position.has_value()) { result = {*position, RectangleSide::Bottom}; } else { // Try left position = rayLineSegmentIntersection(ray, left(rectangle)); if (position.has_value()) { result = {*position, RectangleSide::Left}; } else { // Try right position = rayLineSegmentIntersection(ray, right(rectangle)); if (position.has_value()) { result = {*position, RectangleSide::Right}; } } } } return result; } geom::LineSegment2D geom::top(const QRectF& rectangle) { return { glm::vec2{rectangle.left(), rectangle.top()}, glm::vec2{rectangle.right(), rectangle.top()} }; } geom::LineSegment2D geom::bottom(const QRectF& rectangle) { return { glm::vec2{rectangle.left(), rectangle.bottom()}, glm::vec2{rectangle.right(), rectangle.bottom()} }; } geom::LineSegment2D geom::left(const QRectF& rectangle) { return { glm::vec2{rectangle.left(), rectangle.top()}, glm::vec2{rectangle.left(), rectangle.bottom()} }; } geom::LineSegment2D geom::right(const QRectF& rectangle) { return { glm::vec2{rectangle.right(), rectangle.top()}, glm::vec2{rectangle.right(), rectangle.bottom()} }; } bool geom::isConvex(const std::vector<glm::vec3>& polygon) { const int n = polygon.size(); auto polygonRing = iter::ring(polygon, n); std::vector<glm::vec3> crosses; crosses.resize(n); for (int i = 0; i < n; i += 1) { crosses[i] = glm::cross(polygonRing[i - 1] - polygonRing[i], polygonRing[i + 1] - polygonRing[i]); } return not std::any_of( crosses.begin() + 1, crosses.end(), [&crosses](const glm::vec3& vector) { return glm::dot(crosses[0], vector) < 1e-6; }); }