Mon, 27 Jun 2022 01:57:06 +0300
Further use APPNAME macro
#pragma once #include <algorithm> #include <cassert> #include <cmath> #include <cstddef> #include <limits> #include <memory> #include <utility> #include <vector> namespace mapbox { namespace util { template <std::size_t I, typename T> struct nth { inline static typename std::tuple_element<I, T>::type get(const T& t) { return std::get<I>(t); } }; } namespace detail { template <typename N = uint32_t> class Earcut { public: std::vector<N> indices; std::size_t vertices = 0; template <typename Polygon> void operator()(const Polygon& points); private: struct Node { Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {} Node(const Node&) = delete; Node& operator=(const Node&) = delete; Node(Node&&) = delete; Node& operator=(Node&&) = delete; const N i; const double x; const double y; // previous and next vertice nodes in a polygon ring Node* prev = nullptr; Node* next = nullptr; // z-order curve value int32_t z = 0; // previous and next nodes in z-order Node* prevZ = nullptr; Node* nextZ = nullptr; // indicates whether this is a steiner point bool steiner = false; }; template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise); Node* filterPoints(Node* start, Node* end = nullptr); void earcutLinked(Node* ear, int pass = 0); bool isEar(Node* ear); bool isEarHashed(Node* ear); Node* cureLocalIntersections(Node* start); void splitEarcut(Node* start); template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode); Node* eliminateHole(Node* hole, Node* outerNode); Node* findHoleBridge(Node* hole, Node* outerNode); bool sectorContainsSector(const Node* m, const Node* p); void indexCurve(Node* start); Node* sortLinked(Node* list); int32_t zOrder(const double x_, const double y_); Node* getLeftmost(Node* start); bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const; bool isValidDiagonal(Node* a, Node* b); double area(const Node* p, const Node* q, const Node* r) const; bool equals(const Node* p1, const Node* p2); bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2); bool onSegment(const Node* p, const Node* q, const Node* r); int sign(double val); bool intersectsPolygon(const Node* a, const Node* b); bool locallyInside(const Node* a, const Node* b); bool middleInside(const Node* a, const Node* b); Node* splitPolygon(Node* a, Node* b); template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last); void removeNode(Node* p); bool hashing; double minX, maxX; double minY, maxY; double inv_size = 0; template <typename T, typename Alloc = std::allocator<T>> class ObjectPool { public: ObjectPool() { } ObjectPool(std::size_t blockSize_) { reset(blockSize_); } ~ObjectPool() { clear(); } template <typename... Args> T* construct(Args&&... args) { if (currentIndex >= blockSize) { currentBlock = alloc_traits::allocate(alloc, blockSize); allocations.emplace_back(currentBlock); currentIndex = 0; } T* object = ¤tBlock[currentIndex++]; alloc_traits::construct(alloc, object, std::forward<Args>(args)...); return object; } void reset(std::size_t newBlockSize) { for (auto allocation : allocations) { alloc_traits::deallocate(alloc, allocation, blockSize); } allocations.clear(); blockSize = std::max<std::size_t>(1, newBlockSize); currentBlock = nullptr; currentIndex = blockSize; } void clear() { reset(blockSize); } private: T* currentBlock = nullptr; std::size_t currentIndex = 1; std::size_t blockSize = 1; std::vector<T*> allocations; Alloc alloc; typedef typename std::allocator_traits<Alloc> alloc_traits; }; ObjectPool<Node> nodes; }; template <typename N> template <typename Polygon> void Earcut<N>::operator()(const Polygon& points) { // reset indices.clear(); vertices = 0; if (points.empty()) return; double x; double y; int threshold = 80; std::size_t len = 0; for (size_t i = 0; threshold >= 0 && i < points.size(); i++) { threshold -= static_cast<int>(points[i].size()); len += points[i].size(); } //estimate size of nodes and indices nodes.reset(len * 3 / 2); indices.reserve(len + points[0].size()); Node* outerNode = linkedList(points[0], true); if (!outerNode || outerNode->prev == outerNode->next) return; if (points.size() > 1) outerNode = eliminateHoles(points, outerNode); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox hashing = threshold < 0; if (hashing) { Node* p = outerNode->next; minX = maxX = outerNode->x; minY = maxY = outerNode->y; do { x = p->x; y = p->y; minX = std::min<double>(minX, x); minY = std::min<double>(minY, y); maxX = std::max<double>(maxX, x); maxY = std::max<double>(maxY, y); p = p->next; } while (p != outerNode); // minX, minY and size are later used to transform coords into integers for z-order calculation inv_size = std::max<double>(maxX - minX, maxY - minY); inv_size = inv_size != .0 ? (1. / inv_size) : .0; } earcutLinked(outerNode); nodes.clear(); } // create a circular doubly linked list from polygon points in the specified winding order template <typename N> template <typename Ring> typename Earcut<N>::Node* Earcut<N>::linkedList(const Ring& points, const bool clockwise) { using Point = typename Ring::value_type; double sum = 0; const std::size_t len = points.size(); std::size_t i, j; Node* last = nullptr; // calculate original winding order of a polygon ring for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) { const auto& p1 = points[i]; const auto& p2 = points[j]; const double p20 = util::nth<0, Point>::get(p2); const double p10 = util::nth<0, Point>::get(p1); const double p11 = util::nth<1, Point>::get(p1); const double p21 = util::nth<1, Point>::get(p2); sum += (p20 - p10) * (p11 + p21); } // link points into circular doubly-linked list in the specified winding order if (clockwise == (sum > 0)) { for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last); } else { for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last); } if (last && equals(last, last->next)) { removeNode(last); last = last->next; } vertices += len; return last; } // eliminate colinear or duplicate points template <typename N> typename Earcut<N>::Node* Earcut<N>::filterPoints(Node* start, Node* end) { if (!end) end = start; Node* p = start; bool again; do { again = false; if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) { removeNode(p); p = end = p->prev; if (p == p->next) break; again = true; } else { p = p->next; } } while (again || p != end); return end; } // main ear slicing loop which triangulates a polygon (given as a linked list) template <typename N> void Earcut<N>::earcutLinked(Node* ear, int pass) { if (!ear) return; // interlink polygon nodes in z-order if (!pass && hashing) indexCurve(ear); Node* stop = ear; Node* prev; Node* next; int iterations = 0; // iterate through ears, slicing them one by one while (ear->prev != ear->next) { iterations++; prev = ear->prev; next = ear->next; if (hashing ? isEarHashed(ear) : isEar(ear)) { // cut off the triangle indices.emplace_back(prev->i); indices.emplace_back(ear->i); indices.emplace_back(next->i); removeNode(ear); // skipping the next vertice leads to less sliver triangles ear = next->next; stop = next->next; continue; } ear = next; // if we looped through the whole remaining polygon and can't find any more ears if (ear == stop) { // try filtering points and slicing again if (!pass) earcutLinked(filterPoints(ear), 1); // if this didn't work, try curing all small self-intersections locally else if (pass == 1) { ear = cureLocalIntersections(filterPoints(ear)); earcutLinked(ear, 2); // as a last resort, try splitting the remaining polygon into two } else if (pass == 2) splitEarcut(ear); break; } } } // check whether a polygon node forms a valid ear with adjacent nodes template <typename N> bool Earcut<N>::isEar(Node* ear) { const Node* a = ear->prev; const Node* b = ear; const Node* c = ear->next; if (area(a, b, c) >= 0) return false; // reflex, can't be an ear // now make sure we don't have other points inside the potential ear Node* p = ear->next->next; while (p != ear->prev) { if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) && area(p->prev, p, p->next) >= 0) return false; p = p->next; } return true; } template <typename N> bool Earcut<N>::isEarHashed(Node* ear) { const Node* a = ear->prev; const Node* b = ear; const Node* c = ear->next; if (area(a, b, c) >= 0) return false; // reflex, can't be an ear // triangle bbox; min & max are calculated like this for speed const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x)); const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y)); const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x)); const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y)); // z-order range for the current triangle bbox; const int32_t minZ = zOrder(minTX, minTY); const int32_t maxZ = zOrder(maxTX, maxTY); // first look for points inside the triangle in increasing z-order Node* p = ear->nextZ; while (p && p->z <= maxZ) { if (p != ear->prev && p != ear->next && pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) && area(p->prev, p, p->next) >= 0) return false; p = p->nextZ; } // then look for points in decreasing z-order p = ear->prevZ; while (p && p->z >= minZ) { if (p != ear->prev && p != ear->next && pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) && area(p->prev, p, p->next) >= 0) return false; p = p->prevZ; } return true; } // go through all polygon nodes and cure small local self-intersections template <typename N> typename Earcut<N>::Node* Earcut<N>::cureLocalIntersections(Node* start) { Node* p = start; do { Node* a = p->prev; Node* b = p->next->next; // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2]) if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) { indices.emplace_back(a->i); indices.emplace_back(p->i); indices.emplace_back(b->i); // remove two nodes involved removeNode(p); removeNode(p->next); p = start = b; } p = p->next; } while (p != start); return filterPoints(p); } // try splitting polygon into two and triangulate them independently template <typename N> void Earcut<N>::splitEarcut(Node* start) { // look for a valid diagonal that divides the polygon into two Node* a = start; do { Node* b = a->next->next; while (b != a->prev) { if (a->i != b->i && isValidDiagonal(a, b)) { // split the polygon in two by the diagonal Node* c = splitPolygon(a, b); // filter colinear points around the cuts a = filterPoints(a, a->next); c = filterPoints(c, c->next); // run earcut on each half earcutLinked(a); earcutLinked(c); return; } b = b->next; } a = a->next; } while (a != start); } // link every hole into the outer loop, producing a single-ring polygon without holes template <typename N> template <typename Polygon> typename Earcut<N>::Node* Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) { const size_t len = points.size(); std::vector<Node*> queue; for (size_t i = 1; i < len; i++) { Node* list = linkedList(points[i], false); if (list) { if (list == list->next) list->steiner = true; queue.push_back(getLeftmost(list)); } } std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) { return a->x < b->x; }); // process holes from left to right for (size_t i = 0; i < queue.size(); i++) { outerNode = eliminateHole(queue[i], outerNode); outerNode = filterPoints(outerNode, outerNode->next); } return outerNode; } // find a bridge between vertices that connects hole with an outer ring and and link it template <typename N> typename Earcut<N>::Node* Earcut<N>::eliminateHole(Node* hole, Node* outerNode) { Node* bridge = findHoleBridge(hole, outerNode); if (!bridge) { return outerNode; } Node* bridgeReverse = splitPolygon(bridge, hole); // filter collinear points around the cuts Node* filteredBridge = filterPoints(bridge, bridge->next); filterPoints(bridgeReverse, bridgeReverse->next); // Check if input node was removed by the filtering return outerNode == bridge ? filteredBridge : outerNode; } // David Eberly's algorithm for finding a bridge between hole and outer polygon template <typename N> typename Earcut<N>::Node* Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) { Node* p = outerNode; double hx = hole->x; double hy = hole->y; double qx = -std::numeric_limits<double>::infinity(); Node* m = nullptr; // find a segment intersected by a ray from the hole's leftmost Vertex to the left; // segment's endpoint with lesser x will be potential connection Vertex do { if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) { double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y); if (x <= hx && x > qx) { qx = x; if (x == hx) { if (hy == p->y) return p; if (hy == p->next->y) return p->next; } m = p->x < p->next->x ? p : p->next; } } p = p->next; } while (p != outerNode); if (!m) return 0; if (hx == qx) return m; // hole touches outer segment; pick leftmost endpoint // look for points inside the triangle of hole Vertex, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex const Node* stop = m; double tanMin = std::numeric_limits<double>::infinity(); double tanCur = 0; p = m; double mx = m->x; double my = m->y; do { if (hx >= p->x && p->x >= mx && hx != p->x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) { tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential if (locallyInside(p, hole) && (tanCur < tanMin || (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) { m = p; tanMin = tanCur; } } p = p->next; } while (p != stop); return m; } // whether sector in vertex m contains sector in vertex p in the same coordinates template <typename N> bool Earcut<N>::sectorContainsSector(const Node* m, const Node* p) { return area(m->prev, m, p->prev) < 0 && area(p->next, m, m->next) < 0; } // interlink polygon nodes in z-order template <typename N> void Earcut<N>::indexCurve(Node* start) { assert(start); Node* p = start; do { p->z = p->z ? p->z : zOrder(p->x, p->y); p->prevZ = p->prev; p->nextZ = p->next; p = p->next; } while (p != start); p->prevZ->nextZ = nullptr; p->prevZ = nullptr; sortLinked(p); } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html template <typename N> typename Earcut<N>::Node* Earcut<N>::sortLinked(Node* list) { assert(list); Node* p; Node* q; Node* e; Node* tail; int i, numMerges, pSize, qSize; int inSize = 1; for (;;) { p = list; list = nullptr; tail = nullptr; numMerges = 0; while (p) { numMerges++; q = p; pSize = 0; for (i = 0; i < inSize; i++) { pSize++; q = q->nextZ; if (!q) break; } qSize = inSize; while (pSize > 0 || (qSize > 0 && q)) { if (pSize == 0) { e = q; q = q->nextZ; qSize--; } else if (qSize == 0 || !q) { e = p; p = p->nextZ; pSize--; } else if (p->z <= q->z) { e = p; p = p->nextZ; pSize--; } else { e = q; q = q->nextZ; qSize--; } if (tail) tail->nextZ = e; else list = e; e->prevZ = tail; tail = e; } p = q; } tail->nextZ = nullptr; if (numMerges <= 1) return list; inSize *= 2; } } // z-order of a Vertex given coords and size of the data bounding box template <typename N> int32_t Earcut<N>::zOrder(const double x_, const double y_) { // coords are transformed into non-negative 15-bit integer range int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size); int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size); x = (x | (x << 8)) & 0x00FF00FF; x = (x | (x << 4)) & 0x0F0F0F0F; x = (x | (x << 2)) & 0x33333333; x = (x | (x << 1)) & 0x55555555; y = (y | (y << 8)) & 0x00FF00FF; y = (y | (y << 4)) & 0x0F0F0F0F; y = (y | (y << 2)) & 0x33333333; y = (y | (y << 1)) & 0x55555555; return x | (y << 1); } // find the leftmost node of a polygon ring template <typename N> typename Earcut<N>::Node* Earcut<N>::getLeftmost(Node* start) { Node* p = start; Node* leftmost = start; do { if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y)) leftmost = p; p = p->next; } while (p != start); return leftmost; } // check if a point lies within a convex triangle template <typename N> bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const { return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0; } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) template <typename N> bool Earcut<N>::isValidDiagonal(Node* a, Node* b) { // dones't intersect other edges return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && // locally visible ((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // does not create opposite-facing sectors (area(a->prev, a, b->prev) != 0.0 || area(a, b->prev, b) != 0.0)) || // special zero-length case (equals(a, b) && area(a->prev, a, a->next) > 0 && area(b->prev, b, b->next) > 0)); } // signed area of a triangle template <typename N> double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const { return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y); } // check if two points are equal template <typename N> bool Earcut<N>::equals(const Node* p1, const Node* p2) { return p1->x == p2->x && p1->y == p2->y; } // check if two segments intersect template <typename N> bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) { int o1 = sign(area(p1, q1, p2)); int o2 = sign(area(p1, q1, q2)); int o3 = sign(area(p2, q2, p1)); int o4 = sign(area(p2, q2, q1)); if (o1 != o2 && o3 != o4) return true; // general case if (o1 == 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 if (o2 == 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 if (o3 == 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 if (o4 == 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 return false; } // for collinear points p, q, r, check if point q lies on segment pr template <typename N> bool Earcut<N>::onSegment(const Node* p, const Node* q, const Node* r) { return q->x <= std::max<double>(p->x, r->x) && q->x >= std::min<double>(p->x, r->x) && q->y <= std::max<double>(p->y, r->y) && q->y >= std::min<double>(p->y, r->y); } template <typename N> int Earcut<N>::sign(double val) { return (0.0 < val) - (val < 0.0); } // check if a polygon diagonal intersects any polygon segments template <typename N> bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) { const Node* p = a; do { if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i && intersects(p, p->next, a, b)) return true; p = p->next; } while (p != a); return false; } // check if a polygon diagonal is locally inside the polygon template <typename N> bool Earcut<N>::locallyInside(const Node* a, const Node* b) { return area(a->prev, a, a->next) < 0 ? area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 : area(a, b, a->prev) < 0 || area(a, a->next, b) < 0; } // check if the middle Vertex of a polygon diagonal is inside the polygon template <typename N> bool Earcut<N>::middleInside(const Node* a, const Node* b) { const Node* p = a; bool inside = false; double px = (a->x + b->x) / 2; double py = (a->y + b->y) / 2; do { if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y && (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x)) inside = !inside; p = p->next; } while (p != a); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits // polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a // single ring template <typename N> typename Earcut<N>::Node* Earcut<N>::splitPolygon(Node* a, Node* b) { Node* a2 = nodes.construct(a->i, a->x, a->y); Node* b2 = nodes.construct(b->i, b->x, b->y); Node* an = a->next; Node* bp = b->prev; a->next = b; b->prev = a; a2->next = an; an->prev = a2; b2->next = a2; a2->prev = b2; bp->next = b2; b2->prev = bp; return b2; } // create a node and util::optionally link it with previous one (in a circular doubly linked list) template <typename N> template <typename Point> typename Earcut<N>::Node* Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) { Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt)); if (!last) { p->prev = p; p->next = p; } else { assert(last); p->next = last->next; p->prev = last; last->next->prev = p; last->next = p; } return p; } template <typename N> void Earcut<N>::removeNode(Node* p) { p->next->prev = p->prev; p->prev->next = p->next; if (p->prevZ) p->prevZ->nextZ = p->nextZ; if (p->nextZ) p->nextZ->prevZ = p->prevZ; } } template <typename N = uint32_t, typename Polygon> std::vector<N> earcut(const Polygon& poly) { mapbox::detail::Earcut<N> earcut; earcut(poly); return std::move(earcut.indices); } }