Sat, 08 Apr 2023 12:55:11 +0300
Fix BFC formatting not working due to being evaluated after comment format
/* * LDForge: LDraw parts authoring CAD * Copyright (C) 2013 - 2018 Teemu Piippo * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <QMessageBox> #include "src/documentmanager.h" #include "src/invert.h" #include "src/gl/compiler.h" constexpr char VERTEX_SHADER_SOURCE[] = R"( #version 330 core layout(location=0) in vec3 position; layout(location=1) in vec4 color; layout(location=2) in vec3 normal; layout(location=3) in vec3 pickcolor; layout(location=4) in float selected; out vec4 vColor; out vec3 vFragPos; out vec3 vNormal; uniform mat4 modelMatrix; uniform mat4 viewMatrix; uniform mat4 projectionMatrix; uniform int fragmentStyle; uniform vec4 selectedColor; uniform int highlighted; const int FRAGSTYLE_Normal = 0; const int FRAGSTYLE_BfcGreen = 1; const int FRAGSTYLE_BfcRed = 2; const int FRAGSTYLE_Random = 3; const int FRAGSTYLE_Id = 4; const int FRAGSTYLE_Black = 5; void main() { mat3 normalMatrix = transpose(inverse(mat3(modelMatrix))); vNormal = normalize(normalMatrix * normal); if (fragmentStyle == FRAGSTYLE_Id) { vColor = vec4(pickcolor, 1.0); } else { if (fragmentStyle == FRAGSTYLE_BfcGreen) { vColor = vec4(0.2, 0.9, 0.2, 1.0); } else if (fragmentStyle == FRAGSTYLE_BfcRed) { vColor = vec4(0.9, 0.2, 0.2, 1.0); } else if (fragmentStyle == FRAGSTYLE_Black) { vColor = vec4(0.0, 0.0, 0.0, 1.0); } else { vColor = color; } /* if (highlighted == id) { vColor = (vColor + vec4(selectedColor, 1.0) * 0.6) / 1.6; } */ vColor = (1 - selected) * vColor + selected * selectedColor; } vFragPos = vec3(modelMatrix * vec4(position, 1.0)); gl_Position = projectionMatrix * viewMatrix * vec4(vFragPos, 1.0); } )"; constexpr char FRAGMENT_SHADER_SOURCE[] = R"( #version 330 core in vec4 vColor; in vec3 vFragPos; in vec3 vNormal; out vec4 fColor; const vec3 lightPos = vec3(0.5, 0.5, 0.5); const vec4 lightColor = vec4(1.0, 1.0, 1.0, 1.0); const float ambientStrength = 0.7; uniform bool useLighting; void main() { if (useLighting) { vec4 ambient = ambientStrength * lightColor; vec3 lightDirection = normalize(lightPos - vFragPos); vec4 diffuse = max(dot(vNormal, lightDirection), 0.0) * lightColor; fColor = (ambient + diffuse) * vColor; } else { fColor = vColor; } } )"; template<typename Fn> constexpr void pointsToRender(const PolygonElement& element, Fn func) { visitPolygon<void>( [&func](const LineSegment& edge) { func(edge.p1, glm::vec3{}); func(edge.p2, glm::vec3{}); }, [&func](const Triangle& tri) { func(tri.p1, normalVector({tri.p3, tri.p1, tri.p2})); func(tri.p2, normalVector({tri.p1, tri.p2, tri.p3})); func(tri.p3, normalVector({tri.p2, tri.p3, tri.p1})); }, [&func](const Quadrilateral& quad) { func(quad.p1, normalVector({quad.p4, quad.p1, quad.p2})); func(quad.p2, normalVector({quad.p1, quad.p2, quad.p3})); func(quad.p3, normalVector({quad.p2, quad.p3, quad.p4})); func(quad.p4, normalVector({quad.p3, quad.p4, quad.p1})); }, [&func](const ConditionalEdge& cedge) { func(cedge.p1, glm::vec3{}); func(cedge.p2, glm::vec3{}); }, element); } void gl::buildShaders( QOpenGLShaderProgram* shaderProgram, const char* vertexShaderSource, const char* fragmentShaderSource) { shaderProgram->create(); const bool vertexShaderCompiled = shaderProgram->addShaderFromSourceCode(QOpenGLShader::Vertex, vertexShaderSource); QString log; if (not vertexShaderCompiled) { log += "\n" + QObject::tr("Vertex shader:") + "\n" + shaderProgram->log(); } const bool fragmentShaderCompiled = shaderProgram->addShaderFromSourceCode( QOpenGLShader::Fragment, fragmentShaderSource); if (not fragmentShaderCompiled) { log += "\n" + QObject::tr("Fragment shader:") + "\n" + shaderProgram->log(); } if (not vertexShaderCompiled or not fragmentShaderCompiled) { QMessageBox::critical( nullptr, QObject::tr("Shader compile error"), QObject::tr("Could not compile shaders.") + "\n" + log); std::exit(-1); } const bool linkSuccessful = shaderProgram->link(); if (not linkSuccessful) { QMessageBox::critical( nullptr, QObject::tr("Shader link error"), QObject::tr("Could not link shaders: %1").arg(shaderProgram->log()) ); } } void gl::initializeModelShaders(gl::ModelShaders *modelShaders) { if (not modelShaders->initialized) { for (auto& shader : modelShaders->shaderObjects) { shader.program = std::make_unique<QOpenGLShaderProgram>(); gl::buildShaders(shader.program.get(), VERTEX_SHADER_SOURCE, FRAGMENT_SHADER_SOURCE); shader.program->bind(); shader.buffer.create(); shader.buffer.bind(); shader.buffer.setUsagePattern(QOpenGLBuffer::DynamicDraw); shader.vertexArray.create(); shader.vertexArray.bind(); for (int k : {0, 1, 2, 3, 4}) { shader.program->enableAttributeArray(k); } using Vertex = ModelShaders::Vertex; constexpr std::size_t stride = sizeof(Vertex); shader.program->setAttributeBuffer(0, GL_FLOAT, offsetof(Vertex, position), 3, stride); shader.program->setAttributeBuffer(1, GL_FLOAT, offsetof(Vertex, color), 4, stride); shader.program->setAttributeBuffer(2, GL_FLOAT, offsetof(Vertex, normal), 3, stride); shader.program->setAttributeBuffer(3, GL_FLOAT, offsetof(Vertex, pickcolor), 3, stride); shader.program->setAttributeBuffer(4, GL_FLOAT, offsetof(Vertex, selected), 1, stride); shader.vertexArray.release(); shader.buffer.release(); shader.program->release(); } modelShaders->initialized = true; } } static constexpr gl::ArrayClass classifyPolygon(const PolygonElement& element) { return visitPolygon<gl::ArrayClass>( [](const LineSegment&) { return gl::ArrayClass::Lines; }, [](const Triangle&) { return gl::ArrayClass::Triangles; }, [](const Quadrilateral&) { return gl::ArrayClass::Quads; }, [](const ConditionalEdge&) { return gl::ArrayClass::ConditionalLines; }, element); } template<typename Fn> void iterateModelPolygons(QTextDocument* model, DocumentManager* context, Fn&& fn) { PolygonCache* const cache = findPolygonCacheForModel(model, context); if (cache != nullptr) { recacheIfNeeded(cache, model, context); for (const WithId<PolygonElement>& polygon : cache->polygons) { fn(polygon); } } } static QColor getColorForPolygon( const PolygonElement& polygon, const gl::RenderPreferences& preferences, const ColorTable& colorTable) { QColor color; // For normal colors, use the polygon's color. if (polygon.color == MAIN_COLOR) { color = preferences.mainColor; } else if (polygon.color == EDGE_COLOR) { // Edge color is black, unless we have a dark background, in which case lines need to be bright. color = luma(preferences.backgroundColor) > (40.0 / 256.0) ? Qt::black : Qt::white; } else { // Not main or edge color, use the polygon's color as is. color = colorFace(polygon.color, colorTable).value_or(Qt::black); } return color; } /** * @brief Computes the minimum bounding box for a model */ BoundingBox gl::boundingBoxForModel(QTextDocument* model, DocumentManager* context) { BoundingBox result = emptyBoundingBox; iterateModelPolygons(model, context, [&](const PolygonElement& polygon) { visitPoints([&result](const glm::vec3& p) { addPointToBox(result, p); }, polygon); }); return result; } /** * @brief gl::build Creates GL vertices for objects in the model and buffers them to shaders. */ void gl::build( gl::ModelShaders* shaders, QTextDocument* model, const ColorTable& colorTable, DocumentManager* context, const gl::RenderPreferences& preferences) { for (gl::ModelShaders::ShaderObject& shader : shaders->shaderObjects) { shader.cachedData.clear(); } iterateModelPolygons(model, context, [&](const WithId<PolygonElement>& polygon) { const int index = static_cast<int>(classifyPolygon(polygon)); std::vector<gl::ModelShaders::Vertex>& vertexBuffer = shaders->shaderObjects[index].cachedData; const QColor color = getColorForPolygon(polygon, preferences, colorTable); pointsToRender(polygon, [&](const glm::vec3& point, const glm::vec3& normal){ gl::ModelShaders::Vertex& vertex = vertexBuffer.emplace_back(); vertex.position = point; vertex.normal = normal; vertex.color = glm::vec4{color.redF(), color.greenF(), color.blueF(), color.alphaF()}; vertex.id = polygon.linenumber; vertex.pickcolor = idToColor(polygon.linenumber); }); }); for (gl::ModelShaders::ShaderObject& shader : shaders->shaderObjects) { shader.vertexCount = shader.cachedData.size(); shader.buffer.bind(); const int bytes = static_cast<int>(shader.cachedData.size() * sizeof shader.cachedData[0]); shader.buffer.allocate(shader.cachedData.data(), bytes); shader.buffer.release(); } } int gl::idFromUcharColor(const std::array<GLubyte, 3>& data) { return static_cast<std::int32_t>(data[0]) | static_cast<std::int32_t>(data[1]) << 8 | static_cast<std::int32_t>(data[2]) << 16; } void gl::bindModelShaderVertexArray(gl::ModelShaders* shaders, gl::ArrayClass arrayClass) { ModelShaders::ShaderObject& shaderObject = shaders->shaderObjects[static_cast<int>(arrayClass)]; shaderObject.vertexArray.bind(); shaderObject.program->bind(); } void gl::releaseModelShaderVertexArray(gl::ModelShaders* shaders, gl::ArrayClass arrayClass) { ModelShaders::ShaderObject& shaderObject = shaders->shaderObjects[static_cast<int>(arrayClass)]; shaderObject.program->release(); shaderObject.vertexArray.release(); } /* void gl::setModelShaderSelectedObjects(gl::ModelShaders* shaders, const QSet<ElementId> &ids) { for (ModelShaders::ShaderObject& object : shaders->shaderObjects) { std::vector<ModelShaders::Vertex>& vector = object.cachedData; for (ModelShaders::Vertex& vertex : vector) { vertex.selected = (ids.contains({vertex.id})) ? 1 : 0; } const GLsizeiptr size = static_cast<int>(vector.size() * sizeof vector[0]); object.buffer.bind(); glBufferSubData(GL_ARRAY_BUFFER, 0, size, vector.data()); object.buffer.release(); } } */ std::size_t gl::vertexCount(const gl::ModelShaders* shaders, const gl::ArrayClass arrayClass) { return shaders->shaderObjects[static_cast<int>(arrayClass)].vertexCount; }