Tue, 28 Jun 2022 17:59:34 +0300
Let's bring GLEW back after all
#include <glm/gtc/matrix_transform.hpp> #include "src/geometry.h" #include "src/basics.h" #include "src/ring.h" /** * @brief Computes line-plane intersection * @param line * @param plane * @return point of intersection. Does not return a value if the line is in parallel to the plane. */ std::optional<glm::vec3> linePlaneIntersection( const Line<3>& line, const Plane& plane, const float epsilon) { const float denominator = glm::dot(line.direction, plane.normal); if (std::abs(denominator) < epsilon) { return {}; } else { const float d = glm::dot(plane.anchor - line.anchor, plane.normal) / denominator; return line.anchor + d * line.direction; } } /** * @brief Computes the plane of a triangle * @param triangle * @return plane */ Plane planeFromTriangle(const Triangle& triangle) { return Plane{normalVector(triangle), triangle.p1}; } /** * @brief Computes the normal vector of a triangle * @param triangle * @return normal vector */ glm::vec3 normalVector(const Triangle& triangle) { return glm::normalize( glm::cross( triangle.p2 - triangle.p1, triangle.p3 - triangle.p1)); } /** * @brief Extracts the scaling component of the specified matrix into a vector and returns both the scaling * components as well as the unscaled matrix. * @param matrix Matrix to compute * @return scaling vector and unscaled matrix */ ScalingExtract extractScaling(const glm::mat4& matrix) { ScalingExtract result; result.scaling = scalingVector(matrix); result.unscaled = glm::scale(matrix, 1.0f / result.scaling); return result; } /** * @brief Computes the scaling vector, which contains the scaling of the specified matrix * @param matrix * @return scaling vector */ glm::vec3 scalingVector(const glm::mat4 matrix) { auto component = [](const glm::mat4& matrix, const int i) -> float { return std::hypot(std::hypot(matrix[i][0], matrix[i][1]), matrix[i][2]); }; return glm::vec3{component(matrix, 0), component(matrix, 1), component(matrix, 2)}; } std::optional<glm::vec2> lineLineIntersection(const Line<2>& line_1, const Line<2>& line_2) { const float denominator = (line_1.direction.x * line_2.direction.y) - (line_1.direction.y * line_2.direction.x); constexpr float epsilon = 1e-6f; if (std::abs(denominator) < epsilon) { return {}; } else { const glm::vec2 p1 = line_1.anchor + line_1.direction; const glm::vec2& p2 = line_1.anchor; const glm::vec2 p3 = line_2.anchor + line_2.direction; const glm::vec2& p4 = line_2.anchor; const float a = glm::determinant(glm::mat2{{p1.x, p2.x}, {p1.y, p2.y}}); const float b = glm::determinant(glm::mat2{{p3.x, p4.x}, {p3.y, p4.y}}); const float c_x = glm::determinant(glm::mat2{{p1.x, p2.x}, {1, 1}}); const float c_y = glm::determinant(glm::mat2{{p1.y, p2.y}, {1, 1}}); const float d_x = glm::determinant(glm::mat2{{p3.x, p4.x}, {1, 1}}); const float d_y = glm::determinant(glm::mat2{{p3.y, p4.y}, {1, 1}}); const float x = glm::determinant(glm::mat2{{a, b}, {c_x, d_x}}); const float y = glm::determinant(glm::mat2{{a, b}, {c_y, d_y}}); return glm::vec2{x / denominator, y / denominator}; } } std::optional<glm::vec2> rayLineSegmentIntersection(const Ray<2>& ray, const LineSegment2D& line) { std::optional<glm::vec2> result = lineLineIntersection( rayToLine(ray), lineFromPoints(line.p1, line.p2)); if (result.has_value()) { const float d1 = glm::dot(*result - ray.anchor, ray.direction); if (d1 < 0) { result.reset(); } else { const float d2 = glm::dot(*result - line.p1, *result - line.p2); if (d2 > 0) { result.reset(); } } } return result; } std::optional<PointOnRectagle> rayRectangleIntersection(const Ray<2>& ray, const QRectF& rectangle) { std::optional<glm::vec2> position; std::optional<PointOnRectagle> result; // Try top position = rayLineSegmentIntersection(ray, top(rectangle)); if (position.has_value()) { result = {*position, RectangleSide::Top}; } else { // Try bottom position = rayLineSegmentIntersection(ray, bottom(rectangle)); if (position.has_value()) { result = {*position, RectangleSide::Bottom}; } else { // Try left position = rayLineSegmentIntersection(ray, left(rectangle)); if (position.has_value()) { result = {*position, RectangleSide::Left}; } else { // Try right position = rayLineSegmentIntersection(ray, right(rectangle)); if (position.has_value()) { result = {*position, RectangleSide::Right}; } } } } return result; } LineSegment2D top(const QRectF& rectangle) { return { glm::vec2{rectangle.left(), rectangle.top()}, glm::vec2{rectangle.right(), rectangle.top()} }; } LineSegment2D bottom(const QRectF& rectangle) { return { glm::vec2{rectangle.left(), rectangle.bottom()}, glm::vec2{rectangle.right(), rectangle.bottom()} }; } LineSegment2D left(const QRectF& rectangle) { return { glm::vec2{rectangle.left(), rectangle.top()}, glm::vec2{rectangle.left(), rectangle.bottom()} }; } LineSegment2D right(const QRectF& rectangle) { return { glm::vec2{rectangle.right(), rectangle.top()}, glm::vec2{rectangle.right(), rectangle.bottom()} }; } bool isConvex(const Quadrilateral& quad) { glm::vec3 crosses[4] = { glm::cross(quad.p4 - quad.p1, quad.p2 - quad.p1), glm::cross(quad.p1 - quad.p2, quad.p3 - quad.p2), glm::cross(quad.p2 - quad.p3, quad.p4 - quad.p3), glm::cross(quad.p3 - quad.p4, quad.p1 - quad.p4), }; return not std::any_of( &crosses[1], &crosses[4], [&crosses](const glm::vec3& vector) { return glm::dot(crosses[0], vector) < 1e-6; }); } bool isConvex(const std::vector<glm::vec3>& polygon) { const std::size_t n = polygon.size(); auto polygonRing = iter::ring(polygon, n); std::vector<glm::vec3> crosses; crosses.resize(n); for (std::size_t i = 0; i < n; i += 1) { crosses[i] = glm::cross(polygonRing[i - 1] - polygonRing[i], polygonRing[i + 1] - polygonRing[i]); } return not std::any_of( crosses.begin() + 1, crosses.end(), [&crosses](const glm::vec3& vector) { return glm::dot(crosses[0], vector) < 1e-6; }); } /** * @brief Determines the winding of a 2d polygon * @param polygon * @return winding */ Winding winding(const QPolygonF &polygon) { // based on https://stackoverflow.com/a/1165943 double sum = 0.0; for (int i = 0; i < polygon.size(); i += 1) { const QPointF& p1 = polygon[i]; const QPointF& p2 = polygon[(i + 1) % polygon.size()]; sum += (p2.x() - p1.x()) * (p2.y() + p1.y()); } return (sum < 0) ? Winding::Anticlockwise : Winding::Clockwise; } /** * @brief computes the point on a Bezier curve * @param curve * @param t scalar between 0 and 1, with t=0 being P0 and t=1 being P3 * @return point on curve */ glm::vec3 pointOnCurve(const BezierCurve &curve, float t) { // clamp t as rounding errors might make it slightly out of bounds t = std::clamp(t, 0.0f, 1.0f); const float t_2 = t * t; const float t_3 = t * t * t; const float coeffs[3] = { -1*t_3 +3*t_2 -3*t +1, +3*t_3 -6*t_2 +3*t, -3*t_3 +3*t_2, }; return coeffs[0] * curve[0] + coeffs[1] * curve[1] + coeffs[2] * curve[2] + t_3 * curve[3]; } /** * @brief computes the derivative of a point on a Bezier curve * @param curve * @param t scalar between 0 and 1, with t=0 being P0 and t=1 being P3 * @return point on curve */ glm::vec3 derivativeOnCurve(const BezierCurve &curve, float t) { // clamp t as rounding errors might make it slightly out of bounds t = std::clamp(t, 0.0f, 1.0f); const float t_2 = t * t; const float coeffs[4] = { -3*t_2 + 6*t -3, +9*t_2 -12*t +3, -9*t_2 + 6*t, +3*t_2 }; return coeffs[0] * curve[0] + coeffs[1] * curve[1] + coeffs[2] * curve[2] + coeffs[3] * curve[3]; }