src/ui/canvas.cpp

changeset 65
87c906545fc3
parent 64
f99d52b1646b
child 66
77c819262b7a
--- a/src/ui/canvas.cpp	Sat Feb 29 23:43:38 2020 +0200
+++ b/src/ui/canvas.cpp	Sat Feb 29 23:51:03 2020 +0200
@@ -30,8 +30,19 @@
 	this->worldPosition = this->screenToModelCoordinates(event->pos(), this->gridPlane);
 	if (this->worldPosition.has_value())
 	{
+		/*
+		 * Snap the position to grid. This procedure is basically the "change of basis" and almost follows the
+		 * A⁻¹ × M × A formula which is used to perform a transformation in some other coordinate system, except
+		 * we actually use the inverted matrix first and the regular one last to perform the transformation of
+		 * grid coordinates in our XY coordinate system. Also, we're rounding the coordinates which is obviously
+		 * not a linear transformation, but fits the pattern anyway.
+		 */
+		// First transform the coordinates to the XY plane...
 		this->worldPosition = glm::inverse(this->gridMatrix) * glm::vec4{*this->worldPosition, 1};
+		// Then round the coordinates to integer precision...
 		this->worldPosition = glm::round(*this->worldPosition);
+		// And finally transform it back to grid coordinates by transforming it with the
+		// grid matrix.
 		this->worldPosition = this->gridMatrix * glm::vec4{*this->worldPosition, 1};
 	}
 	if (this->worldPosition.has_value())

mercurial