diff -r a74f2ff353b8 -r b376645315ab src/misc/ringFinder.cc
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/misc/ringFinder.cc Sat Mar 29 05:26:10 2014 +0200
@@ -0,0 +1,169 @@
+/*
+ * LDForge: LDraw parts authoring CAD
+ * Copyright (C) 2013, 2014 Santeri Piippo
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ */
+
+#include "ringFinder.h"
+#include "../miscallenous.h"
+
+RingFinder g_RingFinder;
+
+// =============================================================================
+//
+bool RingFinder::findRingsRecursor (double r0, double r1, Solution& currentSolution)
+{
+ // Don't recurse too deep.
+ if (m_stack >= 5)
+ return false;
+
+ // Find the scale and number of a ring between r1 and r0.
+ assert (r1 >= r0);
+ double scale = r1 - r0;
+ double num = r0 / scale;
+
+ // If the ring number is integral, we have found a fitting ring to r0 -> r1!
+ if (isInteger (num))
+ {
+ Component cmp;
+ cmp.scale = scale;
+ cmp.num = (int) round (num);
+ currentSolution.addComponent (cmp);
+
+ // If we're still at the first recursion, this is the only
+ // ring and there's nothing left to do. Guess we found the winner.
+ if (m_stack == 0)
+ {
+ m_solutions.push_back (currentSolution);
+ return true;
+ }
+ }
+ else
+ {
+ // Try find solutions by splitting the ring in various positions.
+ if (isZero (r1 - r0))
+ return false;
+
+ double interval;
+
+ // Determine interval. The smaller delta between radii, the more precise
+ // interval should be used. We can't really use a 0.5 increment when
+ // calculating rings to 10 -> 105... that would take ages to process!
+ if (r1 - r0 < 0.5)
+ interval = 0.1;
+ else if (r1 - r0 < 10)
+ interval = 0.5;
+ else if (r1 - r0 < 50)
+ interval = 1;
+ else
+ interval = 5;
+
+ // Now go through possible splits and try find rings for both segments.
+ for (double r = r0 + interval; r < r1; r += interval)
+ {
+ Solution sol = currentSolution;
+
+ m_stack++;
+ bool res = findRingsRecursor (r0, r, sol) && findRingsRecursor (r, r1, sol);
+ m_stack--;
+
+ if (res)
+ {
+ // We succeeded in finding radii for this segment. If the stack is 0, this
+ // is the first recursion to this function. Thus there are no more ring segments
+ // to process and we can add the solution.
+ //
+ // If not, when this function ends, it will be called again with more arguments.
+ // Accept the solution to this segment by setting currentSolution to sol, and
+ // return true to continue processing.
+ if (m_stack == 0)
+ m_solutions.push_back (sol);
+ else
+ {
+ currentSolution = sol;
+ return true;
+ }
+ }
+ }
+
+ return false;
+ }
+
+ return true;
+}
+
+// =============================================================================
+// Main function. Call this with r0 and r1. If this returns true, use bestSolution
+// for the solution that was presented.
+//
+bool RingFinder::findRings (double r0, double r1)
+{
+ m_solutions.clear();
+ Solution sol;
+
+ // Recurse in and try find solutions.
+ findRingsRecursor (r0, r1, sol);
+
+ // Compare the solutions and find the best one. The solution class has an operator>
+ // overload to compare two solutions.
+ m_bestSolution = null;
+
+ for (QVector::iterator solp = m_solutions.begin(); solp != m_solutions.end(); ++solp)
+ {
+ const Solution& sol = *solp;
+
+ if (m_bestSolution == null || sol.isSuperiorTo (m_bestSolution))
+ m_bestSolution = /
+ }
+
+ return (m_bestSolution != null);
+}
+
+// =============================================================================
+//
+bool RingFinder::Solution::isSuperiorTo (const Solution* other) const
+{
+ // If this solution has less components than the other one, this one
+ // is definitely better.
+ if (getComponents().size() < other->getComponents().size())
+ return true;
+
+ // vice versa
+ if (other->getComponents().size() < getComponents().size())
+ return false;
+
+ // Calculate the maximum ring number. Since the solutions have equal
+ // ring counts, the solutions with lesser maximum rings should result
+ // in cleaner code and less new primitives, right?
+ int maxA = 0,
+ maxB = 0;
+
+ for (int i = 0; i < getComponents().size(); ++i)
+ {
+ maxA = max (getComponents()[i].num, maxA);
+ maxB = max (other->getComponents()[i].num, maxB);
+ }
+
+ if (maxA < maxB)
+ return true;
+
+ if (maxB < maxA)
+ return false;
+
+ // Solutions have equal rings and equal maximum ring numbers. Let's
+ // just say this one is better, at this point it does not matter which
+ // one is chosen.
+ return true;
+}
\ No newline at end of file