Mon, 27 May 2013 18:17:21 +0300
Added ability to snap to pre-existing vertices while drawing, added changelog
/* * LDForge: LDraw parts authoring CAD * Copyright (C) 2013 Santeri Piippo * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <assert.h> #include "common.h" #include "types.h" #include "misc.h" vertex::vertex (double x, double y, double z) { m_coords[X] = x; m_coords[Y] = y; m_coords[Z] = z; } // ============================================================================= void vertex::move (vertex other) { for (const Axis ax : g_Axes) m_coords[ax] += other[ax]; } // ============================================================================= vertex vertex::midpoint (vertex& other) { vertex mid; for (const Axis ax : g_Axes) mid[ax] = (m_coords[ax] + other[ax]) / 2; return mid; } // ============================================================================= str vertex::stringRep (const bool mangled) { return fmt (mangled ? "(%s, %s, %s)" : "%s %s %s", ftoa (coord (X)).chars(), ftoa (coord (Y)).chars(), ftoa (coord (Z)).chars()); } // ============================================================================= void vertex::transform (matrix matr, vertex pos) { double x2 = (matr[0] * x ()) + (matr[1] * y ()) + (matr[2] * z ()) + pos[X]; double y2 = (matr[3] * x ()) + (matr[4] * y ()) + (matr[5] * z ()) + pos[Y]; double z2 = (matr[6] * x ()) + (matr[7] * y ()) + (matr[8] * z ()) + pos[Z]; x () = x2; y () = y2; z () = z2; } vertex vertex::operator-() const { return vertex (-m_coords[X], -m_coords[Y], -m_coords[Z]); } bool vertex::operator!= (const vertex& other) const { return !operator== (other); } double& vertex::operator[] (const Axis ax) { return coord ((ushort) ax); } const double& vertex::operator[] (const Axis ax) const { return coord ((ushort) ax); } double& vertex::operator[] (const int ax) { return coord (ax); } const double& vertex::operator[] (const int ax) const { return coord (ax); } bool vertex::operator== (const vertex& other) const { return coord (X) == other[X] && coord (Y) == other[Y] && coord (Z) == other[Z]; } vertex& vertex::operator/= (const double d) { for (const Axis ax : g_Axes) m_coords[ax] /= d; return *this; } vertex vertex::operator/ (const double d) const { vertex other (*this); return other /= d; } vertex& vertex::operator+= (vertex other) { move (other); return *this; } int vertex::operator< (const vertex& other) const { if (operator== (other)) return false; if (coord (X) < other[X]) return true; if (coord (X) > other[X]) return false; if (coord (Y) < other[Y]) return true; if (coord (Y) > other[Y]) return false; return coord (Z) < other[Z]; } // ============================================================================= matrix::matrix (double vals[]) { for (short i = 0; i < 9; ++i) m_vals[i] = vals[i]; } matrix::matrix (double fillval) { for (short i = 0; i < 9; ++i) m_vals[i] = fillval; } matrix::matrix (initlist<double> vals) { assert (vals.size() == 9); memcpy (&m_vals[0], &(*vals.begin ()), sizeof m_vals); } void matrix::puts () const { for (short i = 0; i < 3; ++i) { for (short j = 0; j < 3; ++j) printf ("%*f\t", 10, m_vals[(i * 3) + j]); printf ("\n"); } } // ============================================================================= str matrix::stringRep () const { str val; for (short i = 0; i < 9; ++i) { if (i > 0) val += ' '; val += fmt ("%s", ftoa (m_vals[i]).chars()); } return val; } // ============================================================================= void matrix::zero () { memset (&m_vals[0], 0, sizeof (double) * 9); } // ============================================================================= matrix matrix::mult (matrix other) { matrix val; val.zero (); for (short i = 0; i < 3; ++i) for (short j = 0; j < 3; ++j) for (short k = 0; k < 3; ++k) val[(i * 3) + j] += m_vals[(i * 3) + k] * other[(k * 3) + j]; return val; } // ============================================================================= matrix& matrix::operator= (matrix other) { memcpy (&m_vals[0], &other.m_vals[0], sizeof (double) * 9); return *this; } // ============================================================================= double matrix::determinant () const { return (val (0) * val (4) * val (8)) + (val (1) * val (5) * val (6)) + (val (2) * val (3) * val (7)) - (val (2) * val (4) * val (6)) - (val (1) * val (3) * val (8)) - (val (0) * val (5) * val (7)); }