Wed, 05 Mar 2014 17:29:27 +0200
- made MessageLog.h and RingFinder.h suitable for doxygen
/* * LDForge: LDraw parts authoring CAD * Copyright (C) 2013, 2014 Santeri Piippo * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "RingFinder.h" #include "../Misc.h" RingFinder g_RingFinder; // ============================================================================= // bool RingFinder::findRingsRecursor (double r0, double r1, Solution& currentSolution) { // Don't recurse too deep. if (m_stack >= 5) return false; // Find the scale and number of a ring between r1 and r0. assert (r1 >= r0); double scale = r1 - r0; double num = r0 / scale; // If the ring number is integral, we have found a fitting ring to r0 -> r1! if (isInteger (num)) { Component cmp; cmp.scale = scale; cmp.num = (int) round (num); currentSolution.addComponent (cmp); // If we're still at the first recursion, this is the only // ring and there's nothing left to do. Guess we found the winner. if (m_stack == 0) { m_solutions.push_back (currentSolution); return true; } } else { // Try find solutions by splitting the ring in various positions. if (isZero (r1 - r0)) return false; double interval; // Determine interval. The smaller delta between radii, the more precise // interval should be used. We can't really use a 0.5 increment when // calculating rings to 10 -> 105... that would take ages to process! if (r1 - r0 < 0.5) interval = 0.1; else if (r1 - r0 < 10) interval = 0.5; else if (r1 - r0 < 50) interval = 1; else interval = 5; // Now go through possible splits and try find rings for both segments. for (double r = r0 + interval; r < r1; r += interval) { Solution sol = currentSolution; m_stack++; bool res = findRingsRecursor (r0, r, sol) && findRingsRecursor (r, r1, sol); m_stack--; if (res) { // We succeeded in finding radii for this segment. If the stack is 0, this // is the first recursion to this function. Thus there are no more ring segments // to process and we can add the solution. // // If not, when this function ends, it will be called again with more arguments. // Accept the solution to this segment by setting currentSolution to sol, and // return true to continue processing. if (m_stack == 0) m_solutions.push_back (sol); else { currentSolution = sol; return true; } } } return false; } return true; } // ============================================================================= // Main function. Call this with r0 and r1. If this returns true, use bestSolution // for the solution that was presented. // bool RingFinder::findRings (double r0, double r1) { m_solutions.clear(); Solution sol; // Recurse in and try find solutions. findRingsRecursor (r0, r1, sol); // Compare the solutions and find the best one. The solution class has an operator> // overload to compare two solutions. m_bestSolution = null; for (QVector<Solution>::iterator solp = m_solutions.begin(); solp != m_solutions.end(); ++solp) { const Solution& sol = *solp; if (m_bestSolution == null || sol.isBetterThan (m_bestSolution)) m_bestSolution = / } return (m_bestSolution != null); } // ============================================================================= // bool RingFinder::Solution::isBetterThan (const Solution* other) const { // If this solution has less components than the other one, this one // is definitely better. if (getComponents().size() < other->getComponents().size()) return true; // vice versa if (other->getComponents().size() < getComponents().size()) return false; // Calculate the maximum ring number. Since the solutions have equal // ring counts, the solutions with lesser maximum rings should result // in cleaner code and less new primitives, right? int maxA = 0, maxB = 0; for (int i = 0; i < getComponents().size(); ++i) { maxA = max (getComponents()[i].num, maxA); maxB = max (other->getComponents()[i].num, maxB); } if (maxA < maxB) return true; if (maxB < maxA) return false; // Solutions have equal rings and equal maximum ring numbers. Let's // just say this one is better, at this point it does not matter which // one is chosen. return true; }