Sat, 24 Mar 2018 11:05:40 +0200
removed unnecessary files and includes
/* * LDForge: LDraw parts authoring CAD * Copyright (C) 2013 - 2017 Teemu Piippo * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <QLineF> #include "basics.h" #include "types/vertex.h" // http://stackoverflow.com/a/18204188/3629665 template<typename T> inline int rotl10(T x) { return (((x) << 10) | (((x) >> 22) & 0x000000ff)); } template<typename T> inline int rotl20(T x) { return (((x) << 20) | (((x) >> 12) & 0x000000ff)); } uint qHash(const Vertex& key) { return qHash(key.x) ^ rotl10(qHash(key.y)) ^ rotl20(qHash(key.z)); } /* * getRadialPoint * * Gets an ordinate of a point in circle. * If func == sin, then this gets the Y co-ordinate, if func == cos, then X co-ordinate. */ double getRadialPoint(int segment, int divisions, double(*func)(double)) { return (*func)((segment * 2 * pi) / divisions); } /* * makeCircle * * Creates a possibly partial circle rim. * Divisions is how many segments the circle makes if up if it's full. * Segments is now many segments are added. * Radius is the radius of the circle. * * If divisions == segments, this yields a full circle rim. * The rendered circle is returned as a vector of lines. */ QVector<QLineF> makeCircle(int segments, int divisions, double radius) { QVector<QLineF> lines; for (int i = 0; i < segments; ++i) { double x0 = radius * getRadialPoint(i, divisions, cos); double x1 = radius * getRadialPoint(i + 1, divisions, cos); double z0 = radius * getRadialPoint(i, divisions, sin); double z1 = radius * getRadialPoint(i + 1, divisions, sin); lines.append(QLineF {QPointF {x0, z0}, QPointF {x1, z1}}); } return lines; } /* * Computes the shortest distance from a point to a rectangle. * * The code originates from the Unity3D wiki, and was translated from C# to Qt by me (Teemu Piippo): * * Original code: * http://wiki.unity3d.com/index.php/Distance_from_a_point_to_a_rectangle * * Copyright 2013 Philip Peterson. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ qreal distanceFromPointToRectangle(const QPointF& point, const QRectF& rectangle) { // Calculate a distance between a point and a rectangle. // The area around/in the rectangle is defined in terms of // several regions: // // O--x // | // y // // // I | II | III // ======+==========+====== --yMin // VIII | IX (in) | IV // ======+==========+====== --yMax // VII | VI | V // // // Note that the +y direction is down because of Unity's GUI coordinates. if (point.x() < rectangle.left()) { // Region I, VIII, or VII if (point.y() < rectangle.top()) // I return QLineF {point, rectangle.topLeft()}.length(); else if (point.y() > rectangle.bottom()) // VII return QLineF {point, rectangle.bottomLeft()}.length(); else // VIII return rectangle.left() - point.x(); } else if (point.x() > rectangle.right()) { // Region III, IV, or V if (point.y() < rectangle.top()) // III return QLineF {point, rectangle.topRight()}.length(); else if (point.y() > rectangle.bottom()) // V return QLineF {point, rectangle.bottomRight()}.length(); else // IV return point.x() - rectangle.right(); } else { // Region II, IX, or VI if (point.y() < rectangle.top()) // II return rectangle.top() - point.y(); else if (point.y() > rectangle.bottom()) // VI return point.y() - rectangle.bottom(); else // IX return 0; } } /* * Special operator definition that implements the XOR operator for windings. * However, if either winding is NoWinding, then this function returns NoWinding. */ Winding operator^(Winding one, Winding other) { if (one == NoWinding or other == NoWinding) return NoWinding; else return static_cast<Winding>(static_cast<int>(one) ^ static_cast<int>(other)); } Winding& operator^=(Winding& one, Winding other) { one = one ^ other; return one; } QDataStream& operator<<(QDataStream& out, const Library& library) { return out << library.path << library.role; } QDataStream& operator>>(QDataStream &in, Library& library) { return in >> library.path >> enum_cast<>(library.role); }