Fri, 06 Dec 2013 20:53:36 +0200
- Improved coordinate rounding, replaced the hack with a proper implementation, now rounds properly and works on subfiles as well
/* * LDForge: LDraw parts authoring CAD * Copyright (C) 2013 Santeri Piippo * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <math.h> #include <locale.h> #include <QColor> #include "main.h" #include "misc.h" #include "gui.h" #include "dialogs.h" #include "ui_rotpoint.h" RingFinder g_RingFinder; // Prime number table. const int g_primes[NUM_PRIMES] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, }; static const int32 g_e10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, }; // ============================================================================= // ----------------------------------------------------------------------------- // Grid stuff cfg (Int, grid, Grid::Medium); cfg (Float, grid_coarse_x, 5.0f); cfg (Float, grid_coarse_y, 5.0f); cfg (Float, grid_coarse_z, 5.0f); cfg (Float, grid_coarse_angle, 45.0f); cfg (Float, grid_medium_x, 1.0f); cfg (Float, grid_medium_y, 1.0f); cfg (Float, grid_medium_z, 1.0f); cfg (Float, grid_medium_angle, 22.5f); cfg (Float, grid_fine_x, 0.1f); cfg (Float, grid_fine_y, 0.1f); cfg (Float, grid_fine_z, 0.1f); cfg (Float, grid_fine_angle, 7.5f); cfg (Int, edit_rotpoint, 0); cfg (Float, edit_rotpoint_x, 0.0f); // TODO: make a VertexConfig and use it here cfg (Float, edit_rotpoint_y, 0.0f); cfg (Float, edit_rotpoint_z, 0.0f); const gridinfo g_GridInfo[3] = { { "Coarse", { &grid_coarse_x, &grid_coarse_y, &grid_coarse_z, &grid_coarse_angle }}, { "Medium", { &grid_medium_x, &grid_medium_y, &grid_medium_z, &grid_medium_angle }}, { "Fine", { &grid_fine_x, &grid_fine_y, &grid_fine_z, &grid_fine_angle }} }; // ============================================================================= // Snap the given coordinate value on the current grid's given axis. // ----------------------------------------------------------------------------- double Grid::snap (double in, const Grid::Config axis) { const double gridval = currentGrid().confs[axis]->value; const long mult = abs (in / gridval); const bool neg = (in < 0); double out = mult * gridval; if (abs<double> (in) - (mult * gridval) > gridval / 2) out += gridval; if (neg && out != 0) out *= -1; return out; } // ============================================================================= // ----------------------------------------------------------------------------- bool numeric (const str& tok) { bool gotDot = false; for (int i = 0; i < tok.length(); ++i) { const QChar c = tok[i]; // Allow leading hyphen for negatives if (i == 0 && c == '-') continue; // Check for decimal point if (!gotDot && c == '.') { gotDot = true; continue; } if (c >= '0' && c <= '9') continue; // Digit // If the above cases didn't catch this character, it was // illegal and this is therefore not a number. return false; } return true; } // ============================================================================= // ----------------------------------------------------------------------------- void simplify (int& numer, int& denom) { bool repeat; do { repeat = false; for (int x = 0; x < NUM_PRIMES; x++) { const int prime = g_primes[NUM_PRIMES - x - 1]; if (numer <= prime || denom <= prime) continue; if ( (numer % prime == 0) && (denom % prime == 0)) { numer /= prime; denom /= prime; repeat = true; break; } } } while (repeat); } // ============================================================================= // ----------------------------------------------------------------------------- vertex rotPoint (const QList<LDObject*>& objs) { LDBoundingBox box; switch (edit_rotpoint) { case ObjectOrigin: { // Calculate center vertex for (LDObject* obj : objs) if (obj->hasMatrix()) box << dynamic_cast<LDMatrixObject*> (obj)->getPosition(); else box << obj; return box.center(); } case WorldOrigin: { return g_origin; } case CustomPoint: { return vertex (edit_rotpoint_x, edit_rotpoint_y, edit_rotpoint_z); } } return vertex(); } // ============================================================================= // ----------------------------------------------------------------------------- void configRotationPoint() { QDialog* dlg = new QDialog; Ui::RotPointUI ui; ui.setupUi (dlg); switch (edit_rotpoint) { case ObjectOrigin: ui.objectPoint->setChecked (true); break; case WorldOrigin: ui.worldPoint->setChecked (true); break; case CustomPoint: ui.customPoint->setChecked (true); break; } ui.customX->setValue (edit_rotpoint_x); ui.customY->setValue (edit_rotpoint_y); ui.customZ->setValue (edit_rotpoint_z); if (!dlg->exec()) return; edit_rotpoint = (ui.objectPoint->isChecked()) ? ObjectOrigin : (ui.worldPoint->isChecked()) ? WorldOrigin : CustomPoint; edit_rotpoint_x = ui.customX->value(); edit_rotpoint_y = ui.customY->value(); edit_rotpoint_z = ui.customZ->value(); } // ============================================================================= // ----------------------------------------------------------------------------- str join (initlist<StringFormatArg> vals, str delim) { QStringList list; for (const StringFormatArg& arg : vals) list << arg.value(); return list.join (delim); } // ============================================================================= // This is the main algorithm of the ring finder. It tries to use math to find // the one ring between r0 and r1. If it fails (the ring number is non-integral), // it finds an intermediate radius (ceil of the ring number times scale) and // splits the radius at this point, calling this function again to try find the // rings between r0 - r and r - r1. // // This does not always yield into usable results. If at some point r == r0 or // r == r1, there is no hope of finding the rings, at least with this algorithm, // as it would fall into an infinite recursion. // ----------------------------------------------------------------------------- bool RingFinder::findRingsRecursor (double r0, double r1, Solution& currentSolution) { char tabs[64]; memset (tabs, '\t', m_stack); tabs[m_stack] = '\0'; // Don't recurse too deep. if (m_stack >= 5) return false; // Find the scale and number of a ring between r1 and r0. assert (r1 >= r0); double scale = r1 - r0; double num = r0 / scale; // If the ring number is integral, we have found a fitting ring to r0 -> r1! if (isInteger (num)) { Component cmp; cmp.scale = scale; cmp.num = (int) round (num); currentSolution.addComponent (cmp); // If we're still at the first recursion, this is the only // ring and there's nothing left to do. Guess we found the winner. if (m_stack == 0) { m_solutions.push_back (currentSolution); return true; } } else { // Try find solutions by splitting the ring in various positions. if (isZero (r1 - r0)) return false; double interval; // Determine interval. The smaller delta between radii, the more precise // interval should be used. We can't really use a 0.5 increment when // calculating rings to 10 -> 105... that would take ages to process! if (r1 - r0 < 0.5) interval = 0.1; else if (r1 - r0 < 10) interval = 0.5; else if (r1 - r0 < 50) interval = 1; else interval = 5; // Now go through possible splits and try find rings for both segments. for (double r = r0 + interval; r < r1; r += interval) { Solution sol = currentSolution; m_stack++; bool res = findRingsRecursor (r0, r, sol) && findRingsRecursor (r, r1, sol); m_stack--; if (res) { // We succeeded in finding radii for this segment. If the stack is 0, this // is the first recursion to this function. Thus there are no more ring segments // to process and we can add the solution. // // If not, when this function ends, it will be called again with more arguments. // Accept the solution to this segment by setting currentSolution to sol, and // return true to continue processing. if (m_stack == 0) m_solutions.push_back (sol); else { currentSolution = sol; return true; } } } return false; } return true; } // ============================================================================= // Main function. Call this with r0 and r1. If this returns true, use bestSolution // for the solution that was presented. // ----------------------------------------------------------------------------- bool RingFinder::findRings (double r0, double r1) { m_solutions.clear(); Solution sol; // Recurse in and try find solutions. findRingsRecursor (r0, r1, sol); // Compare the solutions and find the best one. The solution class has an operator> // overload to compare two solutions. m_bestSolution = null; for (QVector<Solution>::iterator solp = m_solutions.begin(); solp != m_solutions.end(); ++solp) { const Solution& sol = *solp; if (m_bestSolution == null || sol > *m_bestSolution) m_bestSolution = / } return (m_bestSolution != null); } // ============================================================================= // ----------------------------------------------------------------------------- bool RingFinder::Solution::operator> (const RingFinder::Solution& other) const { // If this solution has less components than the other one, this one // is definitely better. if (getComponents().size() < other.getComponents().size()) return true; // vice versa if (other.getComponents().size() < getComponents().size()) return false; // Calculate the maximum ring number. Since the solutions have equal // ring counts, the solutions with lesser maximum rings should result // in cleaner code and less new primitives, right? int maxA = 0, maxB = 0; for (int i = 0; i < getComponents().size(); ++i) { if (getComponents()[i].num > maxA) maxA = getComponents()[i].num; if (other.getComponents()[i].num > maxB) maxB = other.getComponents()[i].num; } if (maxA < maxB) return true; if (maxB < maxA) return false; // Solutions have equal rings and equal maximum ring numbers. Let's // just say this one is better, at this point it does not matter which // one is chosen. return true; } // ============================================================================= // ----------------------------------------------------------------------------- void roundToDecimals (double& a, int decimals) { assert (decimals >= 0 && decimals < (signed) (sizeof g_e10 / sizeof *g_e10)); a = round (a * g_e10[decimals]) / g_e10[decimals]; }