--- a/src/misc.cpp Wed Oct 16 19:34:12 2013 +0300 +++ b/src/misc.cpp Wed Oct 16 23:07:59 2013 +0300 @@ -315,39 +315,143 @@ // r == r1, there is no hope of finding the rings, at least with this algorithm, // as it would fall into an infinite recursion. // ----------------------------------------------------------------------------- -bool RingFinder::findRings (double r0, double r1) -{ m_solution.clear(); - return findRingsRecursor (r0, r1); -} +bool RingFinder::findRingsRecursor (double r0, double r1, Solution& currentSolution) +{ char tabs[64]; + memset (tabs, '\t', m_stack); + tabs[m_stack] = '\0'; -bool RingFinder::findRingsRecursor (double r0, double r1) -{ // Find the scale and number of a ring between r1 and r0. + // Don't recurse too deep. + if (m_stack >= 5) + return false; + + // Find the scale and number of a ring between r1 and r0. + assert (r1 >= r0); double scale = r1 - r0; double num = r0 / scale; // If the ring number is integral, we have found a fitting ring to r0 -> r1! if (isInteger (num)) - { SolutionComponent cmp; + { Component cmp; cmp.scale = scale; - cmp.num = (int) ceil (num); - m_solution << cmp; + cmp.num = (int) round (num); + currentSolution.addComponent (cmp); + + // If we're still at the first recursion, this is the only + // ring and there's nothing left to do. Guess we found the winner. + if (m_stack == 0) + { m_solutions.push_back (currentSolution); + return true; + } } else - { // If not, find an intermediate <r> between the radii - double r = ceil (num) * scale; - - // If r is the same as r0 or r1, we simply cannot find any rings between - // r0 and r1. Stop and return failure. - if (isZero (r0 - r) || isZero (r1 - r)) + { // Try find solutions by splitting the ring in various positions. + if (isZero (r1 - r0)) return false; - // Split this ring into r0 -> r and r -> r1. Recurse to possibly find - // the rings for these. If either recurse fails, the entire algorithm - // fails as well. - if (!findRingsRecursor (r0, r) || !findRingsRecursor (r, r1)) - return false; + double interval; + + // Determine interval. The smaller delta between radii, the more precise + // interval should be used. We can't really use a 0.5 increment when + // calculating rings to 10 -> 105... that would take ages to process! + if (r1 - r0 < 0.5) + interval = 0.1; + else if (r1 - r0 < 10) + interval = 0.5; + else if (r1 - r0 < 50) + interval = 1; + else + interval = 5; + + // Now go through possible splits and try find rings for both segments. + for (double r = r0 + interval; r < r1; r += interval) + { Solution sol = currentSolution; + + m_stack++; + bool res = findRingsRecursor (r0, r, sol) && findRingsRecursor (r, r1, sol); + m_stack--; + + if (res) + { // We succeeded in finding radii for this segment. If the stack is 0, this + // is the first recursion to this function. Thus there are no more ring segments + // to process and we can add the solution. + // + // If not, when this function ends, it will be called again with more arguments. + // Accept the solution to this segment by setting currentSolution to sol, and + // return true to continue processing. + if (m_stack == 0) + m_solutions.push_back (sol); + else + { currentSolution = sol; + return true; + } + } + } + + return false; } - // The algorithm did not fail, thus we succeeded! return true; -} \ No newline at end of file +} + +// ============================================================================= +// Main function. Call this with r0 and r1. If this returns true, use bestSolution +// for the solution that was presented. +// ----------------------------------------------------------------------------- +bool RingFinder::findRings (double r0, double r1) +{ m_solutions.clear(); + Solution sol; + + // Recurse in and try find solutions. + findRingsRecursor (r0, r1, sol); + + // Compare the solutions and find the best one. The solution class has an operator> + // overload to compare two solutions. + m_bestSolution = null; + + for (QVector<Solution>::iterator solp = m_solutions.begin(); solp != m_solutions.end(); ++solp) + { const Solution& sol = *solp; + + if (m_bestSolution == null || sol > *m_bestSolution) + m_bestSolution = / + } + + return (m_bestSolution != null); +} + +// ============================================================================= +// ----------------------------------------------------------------------------- +bool RingFinder::Solution::operator> (const RingFinder::Solution& other) const +{ // If this solution has less components than the other one, this one + // is definitely better. + if (components().size() < other.components().size()) + return true; + + // vice versa + if (other.components().size() < components().size()) + return false; + + // Calculate the maximum ring number. Since the solutions have equal + // ring counts, the solutions with lesser maximum rings should result + // in cleaner code and less new primitives, right? + int maxA = 0, + maxB = 0; + + for (int i = 0; i < components().size(); ++i) + { if (components()[i].num > maxA) + maxA = components()[i].num; + + if (other.components()[i].num > maxB) + maxB = other.components()[i].num; + } + + if (maxA < maxB) + return true; + + if (maxB < maxA) + return false; + + // Solutions have equal rings and equal maximum ring numbers. Let's + // just say this one is better, at this point it does not matter which + // one is chosen. + return true; +}