--- a/src/misc/ringFinder.cc Mon Jan 20 23:44:22 2014 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,178 +0,0 @@ -/* - * LDForge: LDraw parts authoring CAD - * Copyright (C) 2013, 2014 Santeri Piippo - * - * This program is free software: you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation, either version 3 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. - */ - -#include "ringFinder.h" -#include "../misc.h" - -RingFinder g_RingFinder; - -// ============================================================================= -// This is the main algorithm of the ring finder. It tries to use math to find -// the one ring between r0 and r1. If it fails (the ring number is non-integral), -// it finds an intermediate radius (ceil of the ring number times scale) and -// splits the radius at this point, calling this function again to try find the -// rings between r0 - r and r - r1. -// -// This does not always yield into usable results. If at some point r == r0 or -// r == r1, there is no hope of finding the rings, at least with this algorithm, -// as it would fall into an infinite recursion. -// ----------------------------------------------------------------------------- -bool RingFinder::findRingsRecursor (double r0, double r1, Solution& currentSolution) -{ - // Don't recurse too deep. - if (m_stack >= 5) - return false; - - // Find the scale and number of a ring between r1 and r0. - assert (r1 >= r0); - double scale = r1 - r0; - double num = r0 / scale; - - // If the ring number is integral, we have found a fitting ring to r0 -> r1! - if (isInteger (num)) - { - Component cmp; - cmp.scale = scale; - cmp.num = (int) round (num); - currentSolution.addComponent (cmp); - - // If we're still at the first recursion, this is the only - // ring and there's nothing left to do. Guess we found the winner. - if (m_stack == 0) - { - m_solutions.push_back (currentSolution); - return true; - } - } - else - { - // Try find solutions by splitting the ring in various positions. - if (isZero (r1 - r0)) - return false; - - double interval; - - // Determine interval. The smaller delta between radii, the more precise - // interval should be used. We can't really use a 0.5 increment when - // calculating rings to 10 -> 105... that would take ages to process! - if (r1 - r0 < 0.5) - interval = 0.1; - else if (r1 - r0 < 10) - interval = 0.5; - else if (r1 - r0 < 50) - interval = 1; - else - interval = 5; - - // Now go through possible splits and try find rings for both segments. - for (double r = r0 + interval; r < r1; r += interval) - { - Solution sol = currentSolution; - - m_stack++; - bool res = findRingsRecursor (r0, r, sol) && findRingsRecursor (r, r1, sol); - m_stack--; - - if (res) - { - // We succeeded in finding radii for this segment. If the stack is 0, this - // is the first recursion to this function. Thus there are no more ring segments - // to process and we can add the solution. - // - // If not, when this function ends, it will be called again with more arguments. - // Accept the solution to this segment by setting currentSolution to sol, and - // return true to continue processing. - if (m_stack == 0) - m_solutions.push_back (sol); - else - { - currentSolution = sol; - return true; - } - } - } - - return false; - } - - return true; -} - -// ============================================================================= -// Main function. Call this with r0 and r1. If this returns true, use bestSolution -// for the solution that was presented. -// ----------------------------------------------------------------------------- -bool RingFinder::findRings (double r0, double r1) -{ - m_solutions.clear(); - Solution sol; - - // Recurse in and try find solutions. - findRingsRecursor (r0, r1, sol); - - // Compare the solutions and find the best one. The solution class has an operator> - // overload to compare two solutions. - m_bestSolution = null; - - for (QVector<Solution>::iterator solp = m_solutions.begin(); solp != m_solutions.end(); ++solp) - { - const Solution& sol = *solp; - - if (m_bestSolution == null || sol.isBetterThan (m_bestSolution)) - m_bestSolution = / - } - - return (m_bestSolution != null); -} - -// ============================================================================= -// ----------------------------------------------------------------------------- -bool RingFinder::Solution::isBetterThan (const Solution* other) const -{ - // If this solution has less components than the other one, this one - // is definitely better. - if (getComponents().size() < other->getComponents().size()) - return true; - - // vice versa - if (other->getComponents().size() < getComponents().size()) - return false; - - // Calculate the maximum ring number. Since the solutions have equal - // ring counts, the solutions with lesser maximum rings should result - // in cleaner code and less new primitives, right? - int maxA = 0, - maxB = 0; - - for (int i = 0; i < getComponents().size(); ++i) - { - maxA = max (getComponents()[i].num, maxA); - maxB = max (other->getComponents()[i].num, maxB); - } - - if (maxA < maxB) - return true; - - if (maxB < maxA) - return false; - - // Solutions have equal rings and equal maximum ring numbers. Let's - // just say this one is better, at this point it does not matter which - // one is chosen. - return true; -} \ No newline at end of file