src/misc/ringFinder.cc

changeset 596
43c233e91447
child 597
5ac343ad400e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/misc/ringFinder.cc	Sun Dec 29 16:40:45 2013 +0200
@@ -0,0 +1,170 @@
+/*
+ *  LDForge: LDraw parts authoring CAD
+ *  Copyright (C) 2013 Santeri Piippo
+ *
+ *  This program is free software: you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation, either version 3 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "ringFinder.h"
+#include "../misc.h"
+
+RingFinder g_RingFinder;
+
+// =============================================================================
+// This is the main algorithm of the ring finder. It tries to use math to find
+// the one ring between r0 and r1. If it fails (the ring number is non-integral),
+// it finds an intermediate radius (ceil of the ring number times scale) and
+// splits the radius at this point, calling this function again to try find the
+// rings between r0 - r and r - r1.
+//
+// This does not always yield into usable results. If at some point r == r0 or
+// r == r1, there is no hope of finding the rings, at least with this algorithm,
+// as it would fall into an infinite recursion.
+// -----------------------------------------------------------------------------
+bool RingFinder::findRingsRecursor (double r0, double r1, Solution& currentSolution)
+{	// Don't recurse too deep.
+	if (m_stack >= 5)
+		return false;
+
+	// Find the scale and number of a ring between r1 and r0.
+	assert (r1 >= r0);
+	double scale = r1 - r0;
+	double num = r0 / scale;
+
+	// If the ring number is integral, we have found a fitting ring to r0 -> r1!
+	if (isInteger (num))
+	{	Component cmp;
+		cmp.scale = scale;
+		cmp.num = (int) round (num);
+		currentSolution.addComponent (cmp);
+
+		// If we're still at the first recursion, this is the only
+		// ring and there's nothing left to do. Guess we found the winner.
+		if (m_stack == 0)
+		{	m_solutions.push_back (currentSolution);
+			return true;
+		}
+	}
+	else
+	{	// Try find solutions by splitting the ring in various positions.
+		if (isZero (r1 - r0))
+			return false;
+
+		double interval;
+
+		// Determine interval. The smaller delta between radii, the more precise
+		// interval should be used. We can't really use a 0.5 increment when
+		// calculating rings to 10 -> 105... that would take ages to process!
+		if (r1 - r0 < 0.5)
+			interval = 0.1;
+		else if (r1 - r0 < 10)
+			interval = 0.5;
+		else if (r1 - r0 < 50)
+			interval = 1;
+		else
+			interval = 5;
+
+		// Now go through possible splits and try find rings for both segments.
+		for (double r = r0 + interval; r < r1; r += interval)
+		{	Solution sol = currentSolution;
+
+			m_stack++;
+			bool res = findRingsRecursor (r0, r, sol) && findRingsRecursor (r, r1, sol);
+			m_stack--;
+
+			if (res)
+			{	// We succeeded in finding radii for this segment. If the stack is 0, this
+				// is the first recursion to this function. Thus there are no more ring segments
+				// to process and we can add the solution.
+				//
+				// If not, when this function ends, it will be called again with more arguments.
+				// Accept the solution to this segment by setting currentSolution to sol, and
+				// return true to continue processing.
+				if (m_stack == 0)
+					m_solutions.push_back (sol);
+				else
+				{	currentSolution = sol;
+					return true;
+				}
+			}
+		}
+
+		return false;
+	}
+
+	return true;
+}
+
+// =============================================================================
+// Main function. Call this with r0 and r1. If this returns true, use bestSolution
+// for the solution that was presented.
+// -----------------------------------------------------------------------------
+bool RingFinder::findRings (double r0, double r1)
+{	m_solutions.clear();
+	Solution sol;
+
+	// Recurse in and try find solutions.
+	findRingsRecursor (r0, r1, sol);
+
+	// Compare the solutions and find the best one. The solution class has an operator>
+	// overload to compare two solutions.
+	m_bestSolution = null;
+
+	for (QVector<Solution>::iterator solp = m_solutions.begin(); solp != m_solutions.end(); ++solp)
+	{	const Solution& sol = *solp;
+
+		if (m_bestSolution == null || sol > *m_bestSolution)
+			m_bestSolution = &sol;
+	}
+
+	return (m_bestSolution != null);
+}
+
+// =============================================================================
+// -----------------------------------------------------------------------------
+bool RingFinder::Solution::operator> (const RingFinder::Solution& other) const
+{	// If this solution has less components than the other one, this one
+	// is definitely better.
+	if (getComponents().size() < other.getComponents().size())
+		return true;
+
+	// vice versa
+	if (other.getComponents().size() < getComponents().size())
+		return false;
+
+	// Calculate the maximum ring number. Since the solutions have equal
+	// ring counts, the solutions with lesser maximum rings should result
+	// in cleaner code and less new primitives, right?
+	int maxA = 0,
+	maxB = 0;
+
+	for (int i = 0; i < getComponents().size(); ++i)
+	{	if (getComponents()[i].num > maxA)
+			maxA = getComponents()[i].num;
+
+		if (other.getComponents()[i].num > maxB)
+			maxB = other.getComponents()[i].num;
+	}
+
+	if (maxA < maxB)
+		return true;
+
+	if (maxB < maxA)
+		return false;
+
+	// Solutions have equal rings and equal maximum ring numbers. Let's
+	// just say this one is better, at this point it does not matter which
+	// one is chosen.
+	return true;
+}
\ No newline at end of file

mercurial