31 // This does not always yield into usable results. If at some point r == r0 or |
31 // This does not always yield into usable results. If at some point r == r0 or |
32 // r == r1, there is no hope of finding the rings, at least with this algorithm, |
32 // r == r1, there is no hope of finding the rings, at least with this algorithm, |
33 // as it would fall into an infinite recursion. |
33 // as it would fall into an infinite recursion. |
34 // ----------------------------------------------------------------------------- |
34 // ----------------------------------------------------------------------------- |
35 bool RingFinder::findRingsRecursor (double r0, double r1, Solution& currentSolution) |
35 bool RingFinder::findRingsRecursor (double r0, double r1, Solution& currentSolution) |
36 { // Don't recurse too deep. |
36 { |
|
37 // Don't recurse too deep. |
37 if (m_stack >= 5) |
38 if (m_stack >= 5) |
38 return false; |
39 return false; |
39 |
40 |
40 // Find the scale and number of a ring between r1 and r0. |
41 // Find the scale and number of a ring between r1 and r0. |
41 assert (r1 >= r0); |
42 assert (r1 >= r0); |
42 double scale = r1 - r0; |
43 double scale = r1 - r0; |
43 double num = r0 / scale; |
44 double num = r0 / scale; |
44 |
45 |
45 // If the ring number is integral, we have found a fitting ring to r0 -> r1! |
46 // If the ring number is integral, we have found a fitting ring to r0 -> r1! |
46 if (isInteger (num)) |
47 if (isInteger (num)) |
47 { Component cmp; |
48 { |
|
49 Component cmp; |
48 cmp.scale = scale; |
50 cmp.scale = scale; |
49 cmp.num = (int) round (num); |
51 cmp.num = (int) round (num); |
50 currentSolution.addComponent (cmp); |
52 currentSolution.addComponent (cmp); |
51 |
53 |
52 // If we're still at the first recursion, this is the only |
54 // If we're still at the first recursion, this is the only |
53 // ring and there's nothing left to do. Guess we found the winner. |
55 // ring and there's nothing left to do. Guess we found the winner. |
54 if (m_stack == 0) |
56 if (m_stack == 0) |
55 { m_solutions.push_back (currentSolution); |
57 { |
|
58 m_solutions.push_back (currentSolution); |
56 return true; |
59 return true; |
57 } |
60 } |
58 } |
61 } |
59 else |
62 else |
60 { // Try find solutions by splitting the ring in various positions. |
63 { |
|
64 // Try find solutions by splitting the ring in various positions. |
61 if (isZero (r1 - r0)) |
65 if (isZero (r1 - r0)) |
62 return false; |
66 return false; |
63 |
67 |
64 double interval; |
68 double interval; |
65 |
69 |
75 else |
79 else |
76 interval = 5; |
80 interval = 5; |
77 |
81 |
78 // Now go through possible splits and try find rings for both segments. |
82 // Now go through possible splits and try find rings for both segments. |
79 for (double r = r0 + interval; r < r1; r += interval) |
83 for (double r = r0 + interval; r < r1; r += interval) |
80 { Solution sol = currentSolution; |
84 { |
|
85 Solution sol = currentSolution; |
81 |
86 |
82 m_stack++; |
87 m_stack++; |
83 bool res = findRingsRecursor (r0, r, sol) && findRingsRecursor (r, r1, sol); |
88 bool res = findRingsRecursor (r0, r, sol) && findRingsRecursor (r, r1, sol); |
84 m_stack--; |
89 m_stack--; |
85 |
90 |
86 if (res) |
91 if (res) |
87 { // We succeeded in finding radii for this segment. If the stack is 0, this |
92 { |
|
93 // We succeeded in finding radii for this segment. If the stack is 0, this |
88 // is the first recursion to this function. Thus there are no more ring segments |
94 // is the first recursion to this function. Thus there are no more ring segments |
89 // to process and we can add the solution. |
95 // to process and we can add the solution. |
90 // |
96 // |
91 // If not, when this function ends, it will be called again with more arguments. |
97 // If not, when this function ends, it will be called again with more arguments. |
92 // Accept the solution to this segment by setting currentSolution to sol, and |
98 // Accept the solution to this segment by setting currentSolution to sol, and |
93 // return true to continue processing. |
99 // return true to continue processing. |
94 if (m_stack == 0) |
100 if (m_stack == 0) |
95 m_solutions.push_back (sol); |
101 m_solutions.push_back (sol); |
96 else |
102 else |
97 { currentSolution = sol; |
103 { |
|
104 currentSolution = sol; |
98 return true; |
105 return true; |
99 } |
106 } |
100 } |
107 } |
101 } |
108 } |
102 |
109 |
109 // ============================================================================= |
116 // ============================================================================= |
110 // Main function. Call this with r0 and r1. If this returns true, use bestSolution |
117 // Main function. Call this with r0 and r1. If this returns true, use bestSolution |
111 // for the solution that was presented. |
118 // for the solution that was presented. |
112 // ----------------------------------------------------------------------------- |
119 // ----------------------------------------------------------------------------- |
113 bool RingFinder::findRings (double r0, double r1) |
120 bool RingFinder::findRings (double r0, double r1) |
114 { m_solutions.clear(); |
121 { |
|
122 m_solutions.clear(); |
115 Solution sol; |
123 Solution sol; |
116 |
124 |
117 // Recurse in and try find solutions. |
125 // Recurse in and try find solutions. |
118 findRingsRecursor (r0, r1, sol); |
126 findRingsRecursor (r0, r1, sol); |
119 |
127 |
120 // Compare the solutions and find the best one. The solution class has an operator> |
128 // Compare the solutions and find the best one. The solution class has an operator> |
121 // overload to compare two solutions. |
129 // overload to compare two solutions. |
122 m_bestSolution = null; |
130 m_bestSolution = null; |
123 |
131 |
124 for (QVector<Solution>::iterator solp = m_solutions.begin(); solp != m_solutions.end(); ++solp) |
132 for (QVector<Solution>::iterator solp = m_solutions.begin(); solp != m_solutions.end(); ++solp) |
125 { const Solution& sol = *solp; |
133 { |
|
134 const Solution& sol = *solp; |
126 |
135 |
127 if (m_bestSolution == null || sol > *m_bestSolution) |
136 if (m_bestSolution == null || sol > *m_bestSolution) |
128 m_bestSolution = / |
137 m_bestSolution = / |
129 } |
138 } |
130 |
139 |
132 } |
141 } |
133 |
142 |
134 // ============================================================================= |
143 // ============================================================================= |
135 // ----------------------------------------------------------------------------- |
144 // ----------------------------------------------------------------------------- |
136 bool RingFinder::Solution::operator> (const RingFinder::Solution& other) const |
145 bool RingFinder::Solution::operator> (const RingFinder::Solution& other) const |
137 { // If this solution has less components than the other one, this one |
146 { |
|
147 // If this solution has less components than the other one, this one |
138 // is definitely better. |
148 // is definitely better. |
139 if (getComponents().size() < other.getComponents().size()) |
149 if (getComponents().size() < other.getComponents().size()) |
140 return true; |
150 return true; |
141 |
151 |
142 // vice versa |
152 // vice versa |
148 // in cleaner code and less new primitives, right? |
158 // in cleaner code and less new primitives, right? |
149 int maxA = 0, |
159 int maxA = 0, |
150 maxB = 0; |
160 maxB = 0; |
151 |
161 |
152 for (int i = 0; i < getComponents().size(); ++i) |
162 for (int i = 0; i < getComponents().size(); ++i) |
153 { maxA = max (getComponents()[i].num, maxA); |
163 { |
|
164 maxA = max (getComponents()[i].num, maxA); |
154 maxB = max (other.getComponents()[i].num, maxB); |
165 maxB = max (other.getComponents()[i].num, maxB); |
155 } |
166 } |
156 |
167 |
157 if (maxA < maxB) |
168 if (maxA < maxB) |
158 return true; |
169 return true; |