26 #include "document.h" |
26 #include "document.h" |
27 #include "ui_rotpoint.h" |
27 #include "ui_rotpoint.h" |
28 #include "moc_misc.cpp" |
28 #include "moc_misc.cpp" |
29 |
29 |
30 #include "misc/documentPointer.cc" |
30 #include "misc/documentPointer.cc" |
31 |
31 #include "misc/ringFinder.cc" |
32 RingFinder g_RingFinder; |
|
33 |
32 |
34 // Prime number table. |
33 // Prime number table. |
35 const int g_primes[NUM_PRIMES] = |
34 const int g_primes[NUM_PRIMES] = |
36 { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, |
35 { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, |
37 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, |
36 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, |
274 |
273 |
275 return list.join (delim); |
274 return list.join (delim); |
276 } |
275 } |
277 |
276 |
278 // ============================================================================= |
277 // ============================================================================= |
279 // This is the main algorithm of the ring finder. It tries to use math to find |
|
280 // the one ring between r0 and r1. If it fails (the ring number is non-integral), |
|
281 // it finds an intermediate radius (ceil of the ring number times scale) and |
|
282 // splits the radius at this point, calling this function again to try find the |
|
283 // rings between r0 - r and r - r1. |
|
284 // |
|
285 // This does not always yield into usable results. If at some point r == r0 or |
|
286 // r == r1, there is no hope of finding the rings, at least with this algorithm, |
|
287 // as it would fall into an infinite recursion. |
|
288 // ----------------------------------------------------------------------------- |
|
289 bool RingFinder::findRingsRecursor (double r0, double r1, Solution& currentSolution) |
|
290 { // Don't recurse too deep. |
|
291 if (m_stack >= 5) |
|
292 return false; |
|
293 |
|
294 // Find the scale and number of a ring between r1 and r0. |
|
295 assert (r1 >= r0); |
|
296 double scale = r1 - r0; |
|
297 double num = r0 / scale; |
|
298 |
|
299 // If the ring number is integral, we have found a fitting ring to r0 -> r1! |
|
300 if (isInteger (num)) |
|
301 { Component cmp; |
|
302 cmp.scale = scale; |
|
303 cmp.num = (int) round (num); |
|
304 currentSolution.addComponent (cmp); |
|
305 |
|
306 // If we're still at the first recursion, this is the only |
|
307 // ring and there's nothing left to do. Guess we found the winner. |
|
308 if (m_stack == 0) |
|
309 { m_solutions.push_back (currentSolution); |
|
310 return true; |
|
311 } |
|
312 } |
|
313 else |
|
314 { // Try find solutions by splitting the ring in various positions. |
|
315 if (isZero (r1 - r0)) |
|
316 return false; |
|
317 |
|
318 double interval; |
|
319 |
|
320 // Determine interval. The smaller delta between radii, the more precise |
|
321 // interval should be used. We can't really use a 0.5 increment when |
|
322 // calculating rings to 10 -> 105... that would take ages to process! |
|
323 if (r1 - r0 < 0.5) |
|
324 interval = 0.1; |
|
325 else if (r1 - r0 < 10) |
|
326 interval = 0.5; |
|
327 else if (r1 - r0 < 50) |
|
328 interval = 1; |
|
329 else |
|
330 interval = 5; |
|
331 |
|
332 // Now go through possible splits and try find rings for both segments. |
|
333 for (double r = r0 + interval; r < r1; r += interval) |
|
334 { Solution sol = currentSolution; |
|
335 |
|
336 m_stack++; |
|
337 bool res = findRingsRecursor (r0, r, sol) && findRingsRecursor (r, r1, sol); |
|
338 m_stack--; |
|
339 |
|
340 if (res) |
|
341 { // We succeeded in finding radii for this segment. If the stack is 0, this |
|
342 // is the first recursion to this function. Thus there are no more ring segments |
|
343 // to process and we can add the solution. |
|
344 // |
|
345 // If not, when this function ends, it will be called again with more arguments. |
|
346 // Accept the solution to this segment by setting currentSolution to sol, and |
|
347 // return true to continue processing. |
|
348 if (m_stack == 0) |
|
349 m_solutions.push_back (sol); |
|
350 else |
|
351 { currentSolution = sol; |
|
352 return true; |
|
353 } |
|
354 } |
|
355 } |
|
356 |
|
357 return false; |
|
358 } |
|
359 |
|
360 return true; |
|
361 } |
|
362 |
|
363 // ============================================================================= |
|
364 // Main function. Call this with r0 and r1. If this returns true, use bestSolution |
|
365 // for the solution that was presented. |
|
366 // ----------------------------------------------------------------------------- |
|
367 bool RingFinder::findRings (double r0, double r1) |
|
368 { m_solutions.clear(); |
|
369 Solution sol; |
|
370 |
|
371 // Recurse in and try find solutions. |
|
372 findRingsRecursor (r0, r1, sol); |
|
373 |
|
374 // Compare the solutions and find the best one. The solution class has an operator> |
|
375 // overload to compare two solutions. |
|
376 m_bestSolution = null; |
|
377 |
|
378 for (QVector<Solution>::iterator solp = m_solutions.begin(); solp != m_solutions.end(); ++solp) |
|
379 { const Solution& sol = *solp; |
|
380 |
|
381 if (m_bestSolution == null || sol > *m_bestSolution) |
|
382 m_bestSolution = / |
|
383 } |
|
384 |
|
385 return (m_bestSolution != null); |
|
386 } |
|
387 |
|
388 // ============================================================================= |
|
389 // ----------------------------------------------------------------------------- |
|
390 bool RingFinder::Solution::operator> (const RingFinder::Solution& other) const |
|
391 { // If this solution has less components than the other one, this one |
|
392 // is definitely better. |
|
393 if (getComponents().size() < other.getComponents().size()) |
|
394 return true; |
|
395 |
|
396 // vice versa |
|
397 if (other.getComponents().size() < getComponents().size()) |
|
398 return false; |
|
399 |
|
400 // Calculate the maximum ring number. Since the solutions have equal |
|
401 // ring counts, the solutions with lesser maximum rings should result |
|
402 // in cleaner code and less new primitives, right? |
|
403 int maxA = 0, |
|
404 maxB = 0; |
|
405 |
|
406 for (int i = 0; i < getComponents().size(); ++i) |
|
407 { if (getComponents()[i].num > maxA) |
|
408 maxA = getComponents()[i].num; |
|
409 |
|
410 if (other.getComponents()[i].num > maxB) |
|
411 maxB = other.getComponents()[i].num; |
|
412 } |
|
413 |
|
414 if (maxA < maxB) |
|
415 return true; |
|
416 |
|
417 if (maxB < maxA) |
|
418 return false; |
|
419 |
|
420 // Solutions have equal rings and equal maximum ring numbers. Let's |
|
421 // just say this one is better, at this point it does not matter which |
|
422 // one is chosen. |
|
423 return true; |
|
424 } |
|
425 |
|
426 // ============================================================================= |
|
427 // ----------------------------------------------------------------------------- |
278 // ----------------------------------------------------------------------------- |
428 void roundToDecimals (double& a, int decimals) |
279 void roundToDecimals (double& a, int decimals) |
429 { assert (decimals >= 0 && decimals < (signed) (sizeof g_e10 / sizeof *g_e10)); |
280 { assert (decimals >= 0 && decimals < (signed) (sizeof g_e10 / sizeof *g_e10)); |
430 a = round (a * g_e10[decimals]) / g_e10[decimals]; |
281 a = round (a * g_e10[decimals]) / g_e10[decimals]; |
431 } |
282 } |