1 /* |
|
2 * LDForge: LDraw parts authoring CAD |
|
3 * Copyright (C) 2013 Santeri Piippo |
|
4 * |
|
5 * This program is free software: you can redistribute it and/or modify |
|
6 * it under the terms of the GNU General Public License as published by |
|
7 * the Free Software Foundation, either version 3 of the License, or |
|
8 * (at your option) any later version. |
|
9 * |
|
10 * This program is distributed in the hope that it will be useful, |
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
13 * GNU General Public License for more details. |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License |
|
16 * along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
17 */ |
|
18 |
|
19 #include <math.h> |
|
20 #include <locale.h> |
|
21 #include <QColor> |
|
22 #include "main.h" |
|
23 #include "misc.h" |
|
24 #include "gui.h" |
|
25 #include "dialogs.h" |
|
26 #include "ui_rotpoint.h" |
|
27 |
|
28 RingFinder g_RingFinder; |
|
29 |
|
30 // Prime number table. |
|
31 const int g_primes[NUM_PRIMES] = |
|
32 { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, |
|
33 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, |
|
34 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, |
|
35 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, |
|
36 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, |
|
37 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, |
|
38 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, |
|
39 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, |
|
40 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, |
|
41 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, |
|
42 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, |
|
43 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, |
|
44 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, |
|
45 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, |
|
46 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, |
|
47 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, |
|
48 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, |
|
49 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, |
|
50 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, |
|
51 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, |
|
52 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, |
|
53 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, |
|
54 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, |
|
55 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, |
|
56 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, |
|
57 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, |
|
58 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, |
|
59 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, |
|
60 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, |
|
61 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, |
|
62 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, |
|
63 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, |
|
64 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, |
|
65 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, |
|
66 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, |
|
67 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, |
|
68 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, |
|
69 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, |
|
70 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, |
|
71 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, |
|
72 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, |
|
73 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, |
|
74 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, |
|
75 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, |
|
76 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, |
|
77 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, |
|
78 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, |
|
79 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, |
|
80 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, |
|
81 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, |
|
82 }; |
|
83 |
|
84 static const int32 g_e10[] = |
|
85 { 1, |
|
86 10, |
|
87 100, |
|
88 1000, |
|
89 10000, |
|
90 100000, |
|
91 1000000, |
|
92 10000000, |
|
93 100000000, |
|
94 1000000000, |
|
95 }; |
|
96 |
|
97 // ============================================================================= |
|
98 // ----------------------------------------------------------------------------- |
|
99 // Grid stuff |
|
100 cfg (Int, grid, Grid::Medium); |
|
101 |
|
102 cfg (Float, grid_coarse_x, 5.0f); |
|
103 cfg (Float, grid_coarse_y, 5.0f); |
|
104 cfg (Float, grid_coarse_z, 5.0f); |
|
105 cfg (Float, grid_coarse_angle, 45.0f); |
|
106 cfg (Float, grid_medium_x, 1.0f); |
|
107 cfg (Float, grid_medium_y, 1.0f); |
|
108 cfg (Float, grid_medium_z, 1.0f); |
|
109 cfg (Float, grid_medium_angle, 22.5f); |
|
110 cfg (Float, grid_fine_x, 0.1f); |
|
111 cfg (Float, grid_fine_y, 0.1f); |
|
112 cfg (Float, grid_fine_z, 0.1f); |
|
113 cfg (Float, grid_fine_angle, 7.5f); |
|
114 cfg (Int, edit_rotpoint, 0); |
|
115 cfg (Float, edit_rotpoint_x, 0.0f); // TODO: make a VertexConfig and use it here |
|
116 cfg (Float, edit_rotpoint_y, 0.0f); |
|
117 cfg (Float, edit_rotpoint_z, 0.0f); |
|
118 |
|
119 const gridinfo g_GridInfo[3] = |
|
120 { { "Coarse", { &grid_coarse_x, &grid_coarse_y, &grid_coarse_z, &grid_coarse_angle }}, |
|
121 { "Medium", { &grid_medium_x, &grid_medium_y, &grid_medium_z, &grid_medium_angle }}, |
|
122 { "Fine", { &grid_fine_x, &grid_fine_y, &grid_fine_z, &grid_fine_angle }} |
|
123 }; |
|
124 |
|
125 // ============================================================================= |
|
126 // Snap the given coordinate value on the current grid's given axis. |
|
127 // ----------------------------------------------------------------------------- |
|
128 double Grid::snap (double in, const Grid::Config axis) |
|
129 { const double gridval = currentGrid().confs[axis]->value; |
|
130 const long mult = abs (in / gridval); |
|
131 const bool neg = (in < 0); |
|
132 double out = mult * gridval; |
|
133 |
|
134 if (abs<double> (in) - (mult * gridval) > gridval / 2) |
|
135 out += gridval; |
|
136 |
|
137 if (neg && out != 0) |
|
138 out *= -1; |
|
139 |
|
140 return out; |
|
141 } |
|
142 |
|
143 // ============================================================================= |
|
144 // ----------------------------------------------------------------------------- |
|
145 bool numeric (const str& tok) |
|
146 { bool gotDot = false; |
|
147 |
|
148 for (int i = 0; i < tok.length(); ++i) |
|
149 { const QChar c = tok[i]; |
|
150 |
|
151 // Allow leading hyphen for negatives |
|
152 if (i == 0 && c == '-') |
|
153 continue; |
|
154 |
|
155 // Check for decimal point |
|
156 if (!gotDot && c == '.') |
|
157 { gotDot = true; |
|
158 continue; |
|
159 } |
|
160 |
|
161 if (c >= '0' && c <= '9') |
|
162 continue; // Digit |
|
163 |
|
164 // If the above cases didn't catch this character, it was |
|
165 // illegal and this is therefore not a number. |
|
166 return false; |
|
167 } |
|
168 |
|
169 return true; |
|
170 } |
|
171 |
|
172 // ============================================================================= |
|
173 // ----------------------------------------------------------------------------- |
|
174 void simplify (int& numer, int& denom) |
|
175 { bool repeat; |
|
176 |
|
177 do |
|
178 { repeat = false; |
|
179 |
|
180 for (int x = 0; x < NUM_PRIMES; x++) |
|
181 { const int prime = g_primes[NUM_PRIMES - x - 1]; |
|
182 |
|
183 if (numer <= prime || denom <= prime) |
|
184 continue; |
|
185 |
|
186 if ( (numer % prime == 0) && (denom % prime == 0)) |
|
187 { numer /= prime; |
|
188 denom /= prime; |
|
189 repeat = true; |
|
190 break; |
|
191 } |
|
192 } |
|
193 } |
|
194 while (repeat); |
|
195 } |
|
196 |
|
197 // ============================================================================= |
|
198 // ----------------------------------------------------------------------------- |
|
199 vertex rotPoint (const QList<LDObject*>& objs) |
|
200 { LDBoundingBox box; |
|
201 |
|
202 switch (edit_rotpoint) |
|
203 { case ObjectOrigin: |
|
204 { // Calculate center vertex |
|
205 for (LDObject* obj : objs) |
|
206 if (obj->hasMatrix()) |
|
207 box << dynamic_cast<LDMatrixObject*> (obj)->getPosition(); |
|
208 else |
|
209 box << obj; |
|
210 |
|
211 return box.center(); |
|
212 } |
|
213 |
|
214 case WorldOrigin: |
|
215 { return g_origin; |
|
216 } |
|
217 |
|
218 case CustomPoint: |
|
219 { return vertex (edit_rotpoint_x, edit_rotpoint_y, edit_rotpoint_z); |
|
220 } |
|
221 } |
|
222 |
|
223 return vertex(); |
|
224 } |
|
225 |
|
226 // ============================================================================= |
|
227 // ----------------------------------------------------------------------------- |
|
228 void configRotationPoint() |
|
229 { QDialog* dlg = new QDialog; |
|
230 Ui::RotPointUI ui; |
|
231 ui.setupUi (dlg); |
|
232 |
|
233 switch (edit_rotpoint) |
|
234 { case ObjectOrigin: |
|
235 ui.objectPoint->setChecked (true); |
|
236 break; |
|
237 |
|
238 case WorldOrigin: |
|
239 ui.worldPoint->setChecked (true); |
|
240 break; |
|
241 |
|
242 case CustomPoint: |
|
243 ui.customPoint->setChecked (true); |
|
244 break; |
|
245 } |
|
246 |
|
247 ui.customX->setValue (edit_rotpoint_x); |
|
248 ui.customY->setValue (edit_rotpoint_y); |
|
249 ui.customZ->setValue (edit_rotpoint_z); |
|
250 |
|
251 if (!dlg->exec()) |
|
252 return; |
|
253 |
|
254 edit_rotpoint = |
|
255 (ui.objectPoint->isChecked()) ? ObjectOrigin : |
|
256 (ui.worldPoint->isChecked()) ? WorldOrigin : |
|
257 CustomPoint; |
|
258 |
|
259 edit_rotpoint_x = ui.customX->value(); |
|
260 edit_rotpoint_y = ui.customY->value(); |
|
261 edit_rotpoint_z = ui.customZ->value(); |
|
262 } |
|
263 |
|
264 // ============================================================================= |
|
265 // ----------------------------------------------------------------------------- |
|
266 str join (initlist<StringFormatArg> vals, str delim) |
|
267 { QStringList list; |
|
268 |
|
269 for (const StringFormatArg& arg : vals) |
|
270 list << arg.value(); |
|
271 |
|
272 return list.join (delim); |
|
273 } |
|
274 |
|
275 // ============================================================================= |
|
276 // This is the main algorithm of the ring finder. It tries to use math to find |
|
277 // the one ring between r0 and r1. If it fails (the ring number is non-integral), |
|
278 // it finds an intermediate radius (ceil of the ring number times scale) and |
|
279 // splits the radius at this point, calling this function again to try find the |
|
280 // rings between r0 - r and r - r1. |
|
281 // |
|
282 // This does not always yield into usable results. If at some point r == r0 or |
|
283 // r == r1, there is no hope of finding the rings, at least with this algorithm, |
|
284 // as it would fall into an infinite recursion. |
|
285 // ----------------------------------------------------------------------------- |
|
286 bool RingFinder::findRingsRecursor (double r0, double r1, Solution& currentSolution) |
|
287 { // Don't recurse too deep. |
|
288 if (m_stack >= 5) |
|
289 return false; |
|
290 |
|
291 // Find the scale and number of a ring between r1 and r0. |
|
292 assert (r1 >= r0); |
|
293 double scale = r1 - r0; |
|
294 double num = r0 / scale; |
|
295 |
|
296 // If the ring number is integral, we have found a fitting ring to r0 -> r1! |
|
297 if (isInteger (num)) |
|
298 { Component cmp; |
|
299 cmp.scale = scale; |
|
300 cmp.num = (int) round (num); |
|
301 currentSolution.addComponent (cmp); |
|
302 |
|
303 // If we're still at the first recursion, this is the only |
|
304 // ring and there's nothing left to do. Guess we found the winner. |
|
305 if (m_stack == 0) |
|
306 { m_solutions.push_back (currentSolution); |
|
307 return true; |
|
308 } |
|
309 } |
|
310 else |
|
311 { // Try find solutions by splitting the ring in various positions. |
|
312 if (isZero (r1 - r0)) |
|
313 return false; |
|
314 |
|
315 double interval; |
|
316 |
|
317 // Determine interval. The smaller delta between radii, the more precise |
|
318 // interval should be used. We can't really use a 0.5 increment when |
|
319 // calculating rings to 10 -> 105... that would take ages to process! |
|
320 if (r1 - r0 < 0.5) |
|
321 interval = 0.1; |
|
322 else if (r1 - r0 < 10) |
|
323 interval = 0.5; |
|
324 else if (r1 - r0 < 50) |
|
325 interval = 1; |
|
326 else |
|
327 interval = 5; |
|
328 |
|
329 // Now go through possible splits and try find rings for both segments. |
|
330 for (double r = r0 + interval; r < r1; r += interval) |
|
331 { Solution sol = currentSolution; |
|
332 |
|
333 m_stack++; |
|
334 bool res = findRingsRecursor (r0, r, sol) && findRingsRecursor (r, r1, sol); |
|
335 m_stack--; |
|
336 |
|
337 if (res) |
|
338 { // We succeeded in finding radii for this segment. If the stack is 0, this |
|
339 // is the first recursion to this function. Thus there are no more ring segments |
|
340 // to process and we can add the solution. |
|
341 // |
|
342 // If not, when this function ends, it will be called again with more arguments. |
|
343 // Accept the solution to this segment by setting currentSolution to sol, and |
|
344 // return true to continue processing. |
|
345 if (m_stack == 0) |
|
346 m_solutions.push_back (sol); |
|
347 else |
|
348 { currentSolution = sol; |
|
349 return true; |
|
350 } |
|
351 } |
|
352 } |
|
353 |
|
354 return false; |
|
355 } |
|
356 |
|
357 return true; |
|
358 } |
|
359 |
|
360 // ============================================================================= |
|
361 // Main function. Call this with r0 and r1. If this returns true, use bestSolution |
|
362 // for the solution that was presented. |
|
363 // ----------------------------------------------------------------------------- |
|
364 bool RingFinder::findRings (double r0, double r1) |
|
365 { m_solutions.clear(); |
|
366 Solution sol; |
|
367 |
|
368 // Recurse in and try find solutions. |
|
369 findRingsRecursor (r0, r1, sol); |
|
370 |
|
371 // Compare the solutions and find the best one. The solution class has an operator> |
|
372 // overload to compare two solutions. |
|
373 m_bestSolution = null; |
|
374 |
|
375 for (QVector<Solution>::iterator solp = m_solutions.begin(); solp != m_solutions.end(); ++solp) |
|
376 { const Solution& sol = *solp; |
|
377 |
|
378 if (m_bestSolution == null || sol > *m_bestSolution) |
|
379 m_bestSolution = / |
|
380 } |
|
381 |
|
382 return (m_bestSolution != null); |
|
383 } |
|
384 |
|
385 // ============================================================================= |
|
386 // ----------------------------------------------------------------------------- |
|
387 bool RingFinder::Solution::operator> (const RingFinder::Solution& other) const |
|
388 { // If this solution has less components than the other one, this one |
|
389 // is definitely better. |
|
390 if (getComponents().size() < other.getComponents().size()) |
|
391 return true; |
|
392 |
|
393 // vice versa |
|
394 if (other.getComponents().size() < getComponents().size()) |
|
395 return false; |
|
396 |
|
397 // Calculate the maximum ring number. Since the solutions have equal |
|
398 // ring counts, the solutions with lesser maximum rings should result |
|
399 // in cleaner code and less new primitives, right? |
|
400 int maxA = 0, |
|
401 maxB = 0; |
|
402 |
|
403 for (int i = 0; i < getComponents().size(); ++i) |
|
404 { if (getComponents()[i].num > maxA) |
|
405 maxA = getComponents()[i].num; |
|
406 |
|
407 if (other.getComponents()[i].num > maxB) |
|
408 maxB = other.getComponents()[i].num; |
|
409 } |
|
410 |
|
411 if (maxA < maxB) |
|
412 return true; |
|
413 |
|
414 if (maxB < maxA) |
|
415 return false; |
|
416 |
|
417 // Solutions have equal rings and equal maximum ring numbers. Let's |
|
418 // just say this one is better, at this point it does not matter which |
|
419 // one is chosen. |
|
420 return true; |
|
421 } |
|
422 |
|
423 // ============================================================================= |
|
424 // ----------------------------------------------------------------------------- |
|
425 void roundToDecimals (double& a, int decimals) |
|
426 { assert (decimals >= 0 && decimals < (signed) (sizeof g_e10 / sizeof *g_e10)); |
|
427 a = round (a * g_e10[decimals]) / g_e10[decimals]; |
|
428 } |
|