Sat, 08 Jun 2019 01:32:25 +0300
Problem reporting revamp, program is now aware of its problem types
from math import radians from testsuite import problem_type, report_problem from geometry import * def sign_consistency(container): # Returns whether all elements in container have the same sign return min(container) * max(container) >= 0 @problem_type('concave', severity = 'error', message = 'concave quadrilateral') def concave_test(model): ''' Checks that all quadrilaterals are convex. ''' for quadrilateral in model.quadrilaterals: # Rotate the polygon into the XY plane. Then z is facing # away from the quadrilateral. geometry = transform_to_xy(quadrilateral.geometry) # Now do a 2D concavity test: # https://math.stackexchange.com/a/1745427 z_scores = [ cross_product(v2 - v1, v3 - v1).z for v1, v2, v3 in pairs(geometry.vertices, count = 3) ] if not sign_consistency(z_scores): yield report_problem('concave', bad_object = quadrilateral) @problem_type('skew-major', severity = 'error', message = lambda skew_angle: str.format('skew quadrilateral (plane angle {})', degree_rep(skew_angle), ), ) @problem_type('skew-minor', severity = 'notice', message = lambda skew_angle: str.format('slightly skew quadrilateral (plane angle {})', degree_rep(skew_angle), ), ) def skew_test(model): ''' Checks that all quadrilaterals are coplanar. ''' for quadrilateral in model.quadrilaterals: for triangles in split_quadrilateral(quadrilateral.geometry): plane_1 = triangle_plane_normal(triangles[0]) plane_2 = triangle_plane_normal(triangles[1]) skew_angle = vector_angle(plane_1, plane_2, normalized = True) if skew_angle > radians(3.0): yield report_problem( 'skew-major', bad_object = quadrilateral, skew_angle = skew_angle, ) break elif skew_angle > radians(1.0): yield report_problem( 'skew-minor', bad_object = quadrilateral, skew_angle = skew_angle, ) break @problem_type('self-intersecting', severity = 'error', message = 'self-intersecting quadrilateral', ) def bowtie_test(model): for quadrilateral in model.quadrilaterals: geometry = transform_to_xy(quadrilateral.geometry) vertices = IndexRing(geometry.vertices) for i in (0, 1): line_1 = LineSegment(vertices[0 + i], vertices[1 + i]) line_2 = LineSegment(vertices[2 + i], vertices[3 + i]) intersection = line_segment_intersection_xy(line_1, line_2) if intersection: yield report_problem( 'self-intersecting', bad_object = quadrilateral, ) break @problem_type('collinear', severity = 'error', message = 'collinear polygon') def collinear_test(model): for element in model.body: if hasattr(element, 'geometry') and len(element.geometry.vertices) >= 3: for a, b, c in pairs(element.geometry.vertices, count = 3): if cross_product(b - a, c - a).length() < 1e-5: yield report_problem('collinear', bad_object = element) @problem_type('hairline-polygon', severity = 'notice', message = lambda smallest_angle: str.format( 'hairline polygon (smallest angle {})', degree_rep(smallest_angle), ), ) def hairline_test(model): for element in model.body: if hasattr(element, 'geometry') and len(element.geometry.vertices) >= 3: smallest_angle = element.geometry.smallest_angle if smallest_angle < radians(0.5): yield report_problem( 'hairline-polygon', bad_object = element, smallest_angle = smallest_angle, ) manifest = { 'tests': [ skew_test, concave_test, bowtie_test, collinear_test, hairline_test, ], }