Fri, 05 Feb 2021 12:16:29 +0200
update
1 | 1 | from math import sqrt, hypot, radians, sin, cos, atan2 |
2 | ||
3 | class Location: | |
4 | def __init__(self, latitude, longitude): | |
5 | self.latitude, self.longitude = latitude, longitude | |
6 | def distance(self, other): | |
7 | # https://stackoverflow.com/a/365853 | |
8 | a = sin(radians(self.latitude - other.latitude) / 2) ** 2 | |
9 | a += sin(radians(self.longitude - other.longitude) / 2) ** 2 * cos(radians(self.latitude)) * cos(radians(other.latitude)) | |
10 | return 6371 * 2 * atan2(sqrt(a), sqrt(1 - a)) | |
11 | def __repr__(self): | |
12 | return '%s(%r, %r)' % (type(self).__name__, self.latitude, self.longitude) | |
13 | def __str__(self): | |
14 | return '%.5f, %.5f' % (self.latitude, self.longitude) | |
15 | @property | |
16 | def x(self): | |
17 | return self.latitude | |
18 | @property | |
19 | def y(self): | |
20 | return self.longitude | |
21 | @property | |
22 | def link_to_map(self): | |
23 | return 'http://www.openstreetmap.org/#map=19/%f/%f' % (self.latitude, self.longitude) | |
24 | ||
25 | class Ring: | |
26 | def __init__(self, container): | |
27 | self.container = container | |
28 | def __getitem__(self, i): | |
29 | while i < 0: | |
30 | i += len(self.container) | |
31 | while i >= len(self.container): | |
32 | i -= len(self.container) | |
33 | return self.container[i] | |
34 | def __iter__(self): | |
35 | return iter(self.container) | |
36 | def __len__(self): | |
37 | return len(self.container) | |
38 | ||
39 | class Polygon: | |
40 | def __init__(self, *points): | |
41 | self.points = points | |
42 | def __repr__(self): | |
43 | return '%s(%s)' % (type(self).__name__, ', '.join(map(repr, self.points))) | |
44 | def area(self): | |
45 | ring = Ring(self.points) | |
46 | return sum( | |
47 | ring[i].x * ring[i + 1].y - ring[i + 1].x * ring[i].y | |
48 | for i in range(len(ring)) | |
49 | ) / 2 | |
50 | def circumference(self): | |
51 | ring = Ring(self.points) | |
52 | return sum( | |
53 | sqrt((ring[i + 1].x - ring[i].x)**2 + (ring[i + 1].y - ring[i].y)**2) | |
54 | for i in range(len(ring)) | |
55 | ) | |
56 | def centroid(self): | |
57 | ring = Ring(self.points) | |
58 | x = sum( | |
59 | (ring[i].x + ring[i + 1].x) * (ring[i].x * ring[i + 1].y - ring[i + 1].x * ring[i].y) | |
60 | for i in range(len(ring)) | |
61 | ) / 6 / self.area() | |
62 | y = sum( | |
63 | (ring[i].y + ring[i + 1].y) * (ring[i].x * ring[i + 1].y - ring[i + 1].x * ring[i].y) | |
64 | for i in range(len(ring)) | |
65 | ) / 6 / self.area() | |
66 | return self.point_type()(x, y) | |
67 | def point_type(self): | |
68 | if len(self.points): | |
69 | return type(self.points[0]) | |
70 | else: | |
71 | return Point | |
72 | def segments(self): | |
73 | ring = Ring(self.points) | |
74 | for i in range(len(ring)): | |
75 | yield LineSegment(ring[i], ring[i + 1]) | |
76 | def contains_point(self, point): | |
77 | outer_point = self.point_type()( | |
78 | min(point.x for point in self.points) - 1, | |
79 | min(point.y for point in self.points) - 1 | |
80 | ) | |
81 | outer_segment = LineSegment(point, outer_point) | |
82 | intersections = 0 | |
83 | for segment in self.segments(): | |
84 | if segment.intersection(outer_segment) is not None: | |
85 | intersections += 1 | |
86 | return bool(intersections & 1) | |
87 | ||
88 | class LineSegment: | |
89 | def __init__(self, p1, p2): | |
90 | self.p1, self.p2 = p1, p2 | |
91 | def __repr__(self): | |
92 | return 'LineSegment(%r, %r)' % (self.p1, self.p2) | |
93 | def length(self): | |
94 | return hypot(self.p1.x - self.p2.x, self.p1.y - self.p2.y) | |
95 | def intersection(self, other): | |
96 | point_type = type(self.p1) | |
97 | x = (self.p1.x, self.p2.x, other.p1.x, other.p2.x) | |
98 | y = (self.p1.y, self.p2.y, other.p1.y, other.p2.y) | |
99 | try: | |
100 | denominator = (x[0] - x[1]) * (y[2] - y[3]) - (y[0] - y[1]) * (x[2] - x[3]) | |
101 | Px = ((x[0] * y[1] - y[0] * x[1]) * (x[2] - x[3]) - (x[0] - x[1]) * (x[2] * y[3] - y[2] * x[3])) / denominator | |
102 | Py = ((x[0] * y[1] - y[0] * x[1]) * (y[2] - y[3]) - (y[0] - y[1]) * (x[2] * y[3] - y[2] * x[3])) / denominator | |
103 | distance = lambda n: hypot(Px - x[n], Py - y[n]) | |
104 | if max(distance(0), distance(1)) <= self.length() and max(distance(2), distance(3)) <= other.length(): | |
105 | return point_type(Px, Py) | |
106 | else: | |
107 | return None | |
108 | except ZeroDivisionError: | |
109 | return None | |
110 | ||
111 | class Point: | |
112 | def __init__(self, x, y): | |
113 | self.x, self.y = x, y | |
114 | def __repr__(self): | |
115 | return 'Point(%r, %r)' % (self.x, self.y) | |
116 | ||
117 | A = Polygon( | |
118 | Point(2,3), | |
119 | Point(1,1), | |
120 | Point(4,0), | |
121 | Point(6,2), | |
122 | Point(4,4)) | |
123 | L1 = LineSegment(Point(1, 1), Point(-1, 5)) | |
124 | L2 = LineSegment(Point(1, 5), Point(5, 1)) |