Thu, 06 Dec 2018 20:47:19 +0200
fix
#!/usr/bin/env python3 import sys, json from misc import * from geometry import * from zipfile import ZipFile from configparser import ConfigParser class Blockmap: ''' Models a map of blocks. Maps each location to a square area. ''' block_factor = 0.005 def __init__(self, default = None): from collections import defaultdict self.blocks = default or defaultdict(set) def __getitem__(self, blockid): ''' Returns a block for block coordinates. The block is a set that can contain anything. ''' return self.blocks[blockid] def blockpoint(self, point): ''' Returns a block point for a location. The block point is a coordinate in the blockmap. ''' block_coordinate = lambda x: int(x / self.block_factor) return block_coordinate(point.x), block_coordinate(point.y) def minmax(data): ''' From: http://code.activestate.com/recipes/577916-fast-minmax-function/ Computes the minimum and maximum values in one-pass using only 1.5*len(data) comparisons ''' import itertools it = iter(data) try: lo = hi = next(it) except StopIteration: raise ValueError('minmax() arg is an empty sequence') for x, y in itertools.zip_longest(it, it, fillvalue = lo): if x > y: x, y = y, x lo = min(x, lo) hi = max(y, hi) return lo, hi def blocks_in_shape(blockmap, shape): ''' Finds all blocks inside the bounding box of a shape. ''' from itertools import product min_x, max_x = minmax(point.x for point in shape.points) min_y, max_y = minmax(point.y for point in shape.points) min_blockpoint = blockmap.blockpoint(Location(min_x, min_y)) max_blockpoint = blockmap.blockpoint(Location(max_x, max_y)) range_x = range(min_blockpoint[0], max_blockpoint[0] + 1) range_y = range(min_blockpoint[1], max_blockpoint[1] + 1) yield from (blockmap[x, y] for x, y in product(range_x, range_y)) def location_from_row(row): return Location(float(row['stop_lat']), float(row['stop_lon'])) def read_bus_stops(archive_path): bus_stops = dict() with ZipFile(archive_path) as archive: with archive.open('stops.txt') as file: return { row['stop_id']: location_from_row(row) for row in read_csv(map(bytes.decode, file)) } def create_blockmap(regions): ''' Creates a blockmap of regions ''' blockmap = Blockmap() for region in regions.values(): for block in blocks_in_shape(blockmap, region['shape']): set.add(block, region['name']) return blockmap def get_args(): from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('gtfs_zip') parser.add_argument('profile') return parser.parse_args() def compute_bus_stop_regions(regions, bus_stops): # Find the region every node is in blockmap = create_blockmap(regions) bus_stop_regions = dict() for stop_id, stop_position in bus_stops.items(): for region_name in blockmap[blockmap.blockpoint(stop_position)]: region = regions[region_name] if region['shape'].contains_point(stop_position): bus_stop_regions[stop_id] = region['name'] break else: bus_stop_regions[stop_id] = None return bus_stop_regions def percentage(a): return '%.1f%%' % (a * 100) def compute_route_models(gtfs_path): from buses import load_buses load_buses(gtfs_path) def main(): from regions import parse_regions from misc import profile args = get_args() profile.read(args.profile) regions = parse_regions(profile['regions']['osm-path']) bus_stops = read_bus_stops(args.gtfs_zip) bus_stop_regions = compute_bus_stop_regions(regions, bus_stops) covered = sum(1 if value else 0 for value in bus_stop_regions.values()) total = len(bus_stops) print('%s bus stops covered.' % percentage(covered / total), file = sys.stderr) json.dump(bus_stop_regions, sys.stdout, indent = 2) return 0 if __name__ == '__main__': from sys import exit exit(main())